LLM-based Chatbot
Project description
LLM-Chatbot
Installation
To get the Chatbot Python package by the following commands:
- PyPy
pip install llmchatbot
- GitHub repository
pip install git+https://github.com/egpivo/llmchatbot.git
Serving Automation
This repository automates the process of checking and fine-tuning pre-trained models for the Chatbot application. The automation script allows you to customize SpeechT5 and SWhisper models and enables retraining if needed.
Serving Process Flow
graph TD
A[Check if Model Exists]
B[Fine-Tune Model]
C[Load BentoML Configuration]
D[Serve the App]
E[Check SSL Certificates]
F[Generate Dummy SSL Certificates]
A -- Yes --> C
A -- No --> B
B --> C
C --> D
D --> E
E -- No --> F
E -- Yes --> D
Artifact Folder
During the model serving process, the artifacts
folder is used to store the BentoML artifacts, essential for serving the Chatbot application.
Usage
Local Model Serving
Default Model Values
Run the Chatbot service with default model values:
make local-serve
Customizing the Serving Process
Customize the Chatbot serving process using the automation script. Specify your desired models and options:
bash scripts/run_app_service.sh \
--t5_pretrained_model {replace_with_actual_t5_model} \
--t5_pretrained_vocoder {replace_with_actual_t5_vocoder} \
--whisper_pretrained_model {replace_with_actual_whisper_model} \
--is_retraining
- Note: Replace
{replace_with_actual_t5_model}
,{replace_with_actual_t5_vocoder}
, and{replace_with_actual_whisper_model}
with your preferred values. Adding the--is_retraining
flag forces model retraining.
Model Serving via Docker
By Makefile:
make docker-serve
By docker
CLI
- DockerHub
docker run -p 443:443 egpivo/chatbot:latest
- GitHub Package
docker run -p 443:443 ghcr.io/egpivo/llmchatbot:latest
Client Side
Access the demo chatbot at https://{ip}/chatbot
, with the default values being 0.0.0.0
for the ip
.
- Note: Dummy SSL certificates and keys are created by default for secure communication if
key.pem
andcert.pem
do not exit inartifacts/
. Or you can replace them manually.
Demo
-
Explore the demo site hosted on Alibaba Cloud via https://egpivo.com/chatbot/.
-
Note: This site is intended for demo purposes only, and there is no guarantee of computing efficiency.
Remark
- Reference: BentoChain Repository
- License: BSD 2-Clause License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file llmchatbot-1.0.4.tar.gz
.
File metadata
- Download URL: llmchatbot-1.0.4.tar.gz
- Upload date:
- Size: 11.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.12 Linux/6.2.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa69b0b2564c909325bde3dbacd1254fbeb9cf71362c9cb1104ce4bd1f390bf3 |
|
MD5 | d24da680c12e54111cdc0b0a8417b028 |
|
BLAKE2b-256 | fa5cee1ab274a1b6a3d530b12faaa9dc197c4ebfe54f15a90eb05e8ca44e2bd7 |
File details
Details for the file llmchatbot-1.0.4-py3-none-any.whl
.
File metadata
- Download URL: llmchatbot-1.0.4-py3-none-any.whl
- Upload date:
- Size: 16.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.12 Linux/6.2.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30458d9999f85d096aa221987357a88a97e5e36861850d84879005e3af824e93 |
|
MD5 | e86d5c3d5cc554d0f919224e7c52bfb2 |
|
BLAKE2b-256 | 1bba21e30ca5328b5c18be9c66d72b8ed97ed60a6b9f81508559989a33bf4f82 |