Skip to main content

Using LLM to parse PDF and get better chunk for retrieval

Project description

LLMDocParser

A package for parsing PDFs and analyzing their content using LLMs.

This package is an improvement based on the concept of gptpdf.

Method

gptpdf uses PyMuPDF to parse PDFs, identifying both text and non-text regions. It then merges or filters the text regions based on certain rules, and inputs the final results into a multimodal model for parsing. This method is particularly effective.

Based on this concept, I made some minor improvements.

Main Process

Using a layout analysis model, each page of the PDF is parsed to identify the type of each region, which includes Text, Title, Figure, Figure caption, Table, Table caption, Header, Footer, Reference, and Equation. The coordinates of each region are also obtained.

Layout Analysis Result Example:

[{'header': ((101, 66, 436, 102), 0)},
 {'header': ((1038, 81, 1088, 95), 1)},
 {'title': ((106, 215, 947, 284), 2)},
 {'text': ((101, 319, 835, 390), 3)},
 {'text': ((100, 565, 579, 933), 4)},
 {'text': ((100, 967, 573, 1025), 5)},
 {'text': ((121, 1055, 276, 1091), 6)},
 {'reference': ((101, 1124, 562, 1429), 7)},
 {'text': ((610, 565, 1089, 930), 8)},
 {'text': ((613, 976, 1006, 1045), 9)},
 {'title': ((612, 1114, 726, 1129), 10)},
 {'text': ((611, 1165, 1089, 1431), 11)},
 {'title': ((1011, 1471, 1084, 1492), 12)}]

This result includes the type, coordinates, and reading order of each region. By using this result, more precise rules can be set to parse the PDF.

Finally, input the images of the corresponding regions into a multimodal model, such as GPT-4o or Qwen-VL, to directly obtain text blocks that are friendly to RAG solutions.

img_path type page_no filename content filepath
{absolute_path}/page_1_title.png Title 1 attention is all you need [Text Block 1] {file_absolute_path}
{absolute_path}/page_1_text.png Text 1 attention is all you need [Text Block 2] {file_absolute_path}
{absolute_path}/page_2_figure.png Figure 2 attention is all you need [Text Block 3] {file_absolute_path}
{absolute_path}/page_2_figure_caption.png Figure caption 2 attention is all you need [Text Block 4] {file_absolute_path}
{absolute_path}/page_3_table.png Table 3 attention is all you need [Text Block 5] {file_absolute_path}
{absolute_path}/page_3_table_caption.png Table caption 3 attention is all you need [Text Block 6] {file_absolute_path}
{absolute_path}/page_1_header.png Header 1 attention is all you need [Text Block 7] {file_absolute_path}
{absolute_path}/page_2_footer.png Footer 2 attention is all you need [Text Block 8] {file_absolute_path}
{absolute_path}/page_3_reference.png Reference 3 attention is all you need [Text Block 9] {file_absolute_path}
{absolute_path}/page_1_equation.png Equation 1 attention is all you need [Text Block 10] {file_absolute_path}

See more in llm_parser.py main function.

Installation

pip install llmdocparser

Usage

from llmdocparser.llm_parser import get_image_content

content = get_image_content(
    llm_type="azure",
    pdf_path="path/to/your/pdf",
    output_dir="path/to/output/directory",
    max_concurrency=5,
    azure_deployment="azure-gpt-4o",
    azure_endpoint="your_azure_endpoint",
    api_key="your_api_key",
    api_version="your_api_version"
)
print(content)

Parameters

  • llm_type: str

    The options are azure, openai, dashscope.

  • pdf_path: str

    Path to the PDF file.

  • output_dir: str

    Output directory to store all parsed images.

  • max_concurrency: int

    Number of GPT parsing worker threads. Batch calling details: Batch Support

If using Azure, the azure_deployment and azure_endpoint parameters need to be passed; otherwise, only the API key needs to be provided.

Cost

Using the 'Attention Is All You Need' paper for analysis, the model chosen is GPT-4o, costing as follows:

Total Tokens: 44063
Prompt Tokens: 33812
Completion Tokens: 10251
Total Cost (USD): $0.322825

Average cost per page: $0.0215

Star History

Star History Chart

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmdocparser-0.1.5.tar.gz (1.1 MB view details)

Uploaded Source

Built Distribution

llmdocparser-0.1.5-py3-none-any.whl (1.2 MB view details)

Uploaded Python 3

File details

Details for the file llmdocparser-0.1.5.tar.gz.

File metadata

  • Download URL: llmdocparser-0.1.5.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for llmdocparser-0.1.5.tar.gz
Algorithm Hash digest
SHA256 4400d1a2bb22b6dfd6548e00da0a7b229e3e19108f48e366791b39117777fc41
MD5 e78b1c433eb56ace30d77362a146b320
BLAKE2b-256 67d77a99ad3be1fa46a4bc526d9180e6e5336664f78c00327edbb48d2d0da02d

See more details on using hashes here.

File details

Details for the file llmdocparser-0.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for llmdocparser-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 ca4911fc48b460687fb797697ff57caed5f209c17b58a81fe99937318343a5b0
MD5 415c4a49175d496383f19ca11e809cc7
BLAKE2b-256 e6ab663cea2a87a63abe7b8e783cc62c6320fe06b8d37a1346ffcaa58dc5286d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page