Skip to main content

Automatically make the OpenAI tool JSON Schema, parsing call and constructing the result to the chat model.

Project description

LLM FOO

Version Downloads

Overview

LLM FOO is a cutting-edge project blending the art of Kung Fu with the science of Large Language Models... or actually this is about automatically making the OpenAI tool JSON Schema, parsing call and constructing the result to the chat model. And then there is a second utility is_statement_true that uses genius logit_bias trick that only uses one output token.

But hey I hope this will become a set of small useful LLM helper functions that will make building stuff easier because current bleeding edge APIs are a bit of a mess and I think we can do better.

Installation

pip install llmfoo

Usage

  • You need to have OPENAI_API_KEY in env and ability to call gpt-4-1106-preview model

  • is_statement_true should be easy to understand. Make some natural language statement, and check it against criteria or general truthfulness. You get back boolean.

For the LLM FOO tool:

  1. Add @tool annotation.
  2. llmfoo will generate the json schema to YOURFILE.tool.json with GPT-4-Turbo - "Never send a machine to do a human's job" .. like who wants to write boilerplate docs for Machines???
  3. Annotated functions have helpers:
    • openai_schema to return the schema (You can edit it from the json if your not happy with what the machines did)
    • openai_tool_call to make the tool call and return the result in chat API message format
    • openai_tool_output to make the tool call and return the result in assistant API tool output format
from time import sleep

from openai import OpenAI

from llmfoo.functions import tool
from llmfoo import is_statement_true


def test_is_statement_true_with_default_criteria():
    assert is_statement_true("Earth is a planet.")
    assert not is_statement_true("1 + 2 = 5")


def test_is_statement_true_with_own_criteria():
    assert not is_statement_true("Temperature outside is -2 degrees celsius",
                                 criteria="Temperature above 0 degrees celsius")
    assert is_statement_true("1984 was written by George Orwell",
                             criteria="George Orwell is the author of 1984")


def test_is_statement_true_criteria_can_change_truth_value():
    assert is_statement_true("Earth is 3rd planet from the Sun")
    assert not is_statement_true("Earth is 3rd planet from the Sun",
                                 criteria="Earth is stated to be 5th planet from the Sun")


@tool
def adder(x: int, y: int) -> int:
    return x + y


@tool
def multiplier(x: int, y: int) -> int:
    return x * y


client = OpenAI()


def test_chat_completion_with_adder():
    number1 = 3267182746
    number2 = 798472847
    messages = [
        {
            "role": "user",
            "content": f"What is {number1} + {number2}?"
        }
    ]
    response = client.chat.completions.create(
        model="gpt-4-1106-preview",
        messages=messages,
        tools=[adder.openai_schema]
    )
    messages.append(response.choices[0].message)
    messages.append(adder.openai_tool_call(response.choices[0].message.tool_calls[0]))
    response2 = client.chat.completions.create(
        model="gpt-4-1106-preview",
        messages=messages,
        tools=[adder.openai_schema]
    )
    assert str(adder(number1, number2)) in response2.choices[0].message.content.replace(",", "")


def test_assistant_with_multiplier():
    number1 = 1238763428176
    number2 = 172388743612
    assistant = client.beta.assistants.create(
        name="The Calc Machina",
        instructions="You are a calculator with a funny pirate accent.",
        tools=[multiplier.openai_schema],
        model="gpt-4-1106-preview"
    )
    thread = client.beta.threads.create(messages=[
        {
            "role":"user",
            "content":f"What is {number1} * {number2}?"
        }
    ])
    run = client.beta.threads.runs.create(
        thread_id=thread.id,
        assistant_id=assistant.id
    )
    while True:
        run_state = client.beta.threads.runs.retrieve(
            run_id=run.id,
            thread_id=thread.id,
        )
        if run_state.status not in ['in_progress', 'requires_action']:
            break
        if run_state.status == 'requires_action':
            tool_call = run_state.required_action.submit_tool_outputs.tool_calls[0]
            run = client.beta.threads.runs.submit_tool_outputs(
                thread_id=thread.id,
                run_id=run.id,
                tool_outputs=[
                    multiplier.openai_tool_output(tool_call)
                ]
            )
            sleep(1)
        sleep(0.1)
    messages = client.beta.threads.messages.list(thread_id=thread.id)
    assert str(multiplier(number1, number2)) in messages.data[0].content[0].text.value.replace(",", "")

Contributing

Interested in contributing? Loved to get your help to make this project better! The APIs under are changing and system is still very much first version.

License

This project is licensed under the MIT License.

Acknowledgements

  • Thanks to all the contributors and maintainers.
  • Special thanks to the Kung Fu masters such as Bruce Lee who inspired this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmfoo-0.5.0.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

llmfoo-0.5.0-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file llmfoo-0.5.0.tar.gz.

File metadata

  • Download URL: llmfoo-0.5.0.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.0 CPython/3.12.0 Darwin/23.2.0

File hashes

Hashes for llmfoo-0.5.0.tar.gz
Algorithm Hash digest
SHA256 603ca69db80a55b2c125065825a9d75d7be38530d435f0124ab29d08e71648a6
MD5 f88f3d4541ce20fe677454732a92fcd7
BLAKE2b-256 a856a9b9cce4897bf1f4dc958f3a108d80e22c5dffe6b8823b5bb2a40333e53c

See more details on using hashes here.

File details

Details for the file llmfoo-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: llmfoo-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 6.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.0 CPython/3.12.0 Darwin/23.2.0

File hashes

Hashes for llmfoo-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 44a5541895e0b364b8581c306d30f582472fbf8f3634d0abbc2c56347cc7624e
MD5 33caca92ac8c8e07588cddabd7ea1330
BLAKE2b-256 d4cd55d8c4e646b95588eb3626d5d27333135f049b40fe1115ec0b2873da445f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page