Skip to main content

A simple llm library.

Project description

llmtext

llmtext is a simple yet powerful library designed to interact with large language models (LLMs) as straightforward functions. It provides easy-to-use interfaces for both input-output text transformations and input-to-Pydantic class conversions, leveraging the power of open-source LLMs and OpenAI's schema.

Features

  • Input Text, Output Text: Seamlessly generate text outputs from text inputs using large language models.
  • Input Text, Output Pydantic Class: Convert text inputs directly into structured Pydantic classes for better data validation and manipulation.
  • OpenAI Schema Support: Utilize OpenAI's schema for consistent and robust text processing.
  • OpenSource LLMs through TogetherAI: Access a variety of open-source LLMs via TogetherAI for flexible and cost-effective solutions.
  • Async by default: Asynchronous by default
  • Robusts: configured with retry and self healing loop for structured extraction

Installation

You can install llmtext via pip:

pip install llmtext

Usage

Text to Text Transformation

To generate text outputs from text inputs:

from llmtext.llms.openai import OpenaiLLM

llm = OpenaiLLM()
res = await llm.arun(text="What is the capital of France?")

Text to Pydantic Class Transformation

To convert text inputs into a Pydantic class:

from llmtext.llms.openai import OpenaiLLM

llm = OpenaiLLM()

class ExtractedData(BaseModel):
    name: Annotated[str, Field(description="Name of the city")]
    description: Annotated[str, Field(description="Description of the city")]

res = await llm.astructured_extraction(text="The city of France is Paris. It's a beautiful city.", output_class=ExtractedData)
assert isinstance(res, ExtractedData)

Access open source models through togetherAI

from llmtext.llms.togetherai import TogetherAILLM

llm = TogetherAILLM()

class ExtractedData(BaseModel):
    name: Annotated[str, Field(description="Name of the city")]
    description: Annotated[str, Field(description="Description of the city")]

res = await llm.astructured_extraction(text="The city of France is Paris. It's a beautiful city.", output_class=ExtractedData)

assert isinstance(res, ExtractedData)

Configuration

To configure llmtext for using OpenAI's schema or TogetherAI's open-source LLMs, you can set the necessary API keys in your environment variables or configuration file.

Example Configuration

TOGETHERAI_API_KEY=
TOGETHER_API_BASE_URL=https://api.together.xyz/v1
OPENAI_API_KEY=

Contributing

We welcome contributions to llmtext. Please fork the repository and submit pull requests. For major changes, please open an issue first to discuss what you would like to change.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Acknowledgments

Special thanks to OpenAI for providing robust schema support and TogetherAI for enabling access to open-source LLMs.


For more information, please refer to the documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmtext-2.0.0.tar.gz (6.2 kB view details)

Uploaded Source

Built Distribution

llmtext-2.0.0-py3-none-any.whl (9.0 kB view details)

Uploaded Python 3

File details

Details for the file llmtext-2.0.0.tar.gz.

File metadata

  • Download URL: llmtext-2.0.0.tar.gz
  • Upload date:
  • Size: 6.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Linux/6.8.0-35-generic

File hashes

Hashes for llmtext-2.0.0.tar.gz
Algorithm Hash digest
SHA256 6364df91145d001147fba9d26a74d75355f4c2c0c0a10cee8a3d8b8c511ebbd2
MD5 584f90cc4b5407b4f576cc993a17ae53
BLAKE2b-256 0b4bfba9b83164299589e3753f8c399437894488e2b25c2b88f34dad28afbc5e

See more details on using hashes here.

File details

Details for the file llmtext-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: llmtext-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 9.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Linux/6.8.0-35-generic

File hashes

Hashes for llmtext-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b202af48120b8a49c9b6ffb8e2fb8c5b395289f6208153ca64704e60fe4d5604
MD5 1e44c62e9dacef9fe0402f592ecf1f33
BLAKE2b-256 b036a26b099a5e8dc3ce0c3275508ea3fbcd8e13b471557a287900fd97f56cf2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page