Skip to main content

Command-line interface with state-of-the-art neural network language models

Project description

Language Model Zoo

zoo-logo

CircleCI Gitter chat

The Language Model Zoo is an open-source repository of state-of-the-art language models, designed to support black-box access to model predictions and representations. It provides the command line tool lm-zoo, a standard interface for interacting with language models.

You can use lm-zoo to

  1. compute language model predictions at the word level,
  2. extract token-level surprisal data (popularly used in psycholinguistic experiments), and
  3. preprocess corpora according to a language model's particular tokenization standards.

Quick links:

Getting started

Running language models from this repository requires Docker.

You can install the lm-zoo via pip:

$ pip install lm-zoo

List available language models:

$ lm-zoo list
gpt2
        Image URI:  docker.io/cpllab/language-models:gpt2
        Full name: None
        Reference URL: https://openai.com/blog/better-language-models/
        Maintainer: None
        Last updated: None
RNNG
        Image URI:  docker.io/cpllab/language-models:rnng
        Full name: None
        Reference URL: TODO
        Maintainer: None
        Last updated: None
ordered-neurons
        Image URI:  docker.io/cpllab/language-models:ordered-neurons
        Full name: None
        Reference URL: https://github.com/yikangshen/Ordered-Neurons
        Maintainer: None
        Last updated: None
...

Tokenize some text according to a language model's standard:

$ wget https://cpllab.github.io/lm-zoo/metamorphosis.txt -O metamorphosis.txt
$ lm-zoo tokenize gpt2 metamorphosis.txt
Pulling latest Docker image for cpllab/language-models:gpt2.
One Ġmorning , Ġwhen ĠGreg or ĠSam sa Ġwoke Ġfrom Ġtroubled Ġdreams , Ġhe Ġfound Ġhimself Ġtransformed Ġin Ġhis Ġbed Ġinto Ġa Ġhorrible Ġver min .
He Ġlay Ġon Ġhis Ġarmour - like Ġback , Ġand Ġif Ġhe Ġlifted Ġhis Ġhead Ġa Ġlittle Ġhe Ġcould Ġsee Ġhis Ġbrown Ġbelly , Ġslightly Ġdom ed Ġand Ġdivided Ġby Ġar ches Ġinto Ġstiff Ġsections .
The Ġbed ding Ġwas Ġhardly Ġable Ġto Ġcover Ġit Ġand Ġseemed Ġready Ġto Ġslide Ġoff Ġany Ġmoment .
...

Get token-level surprisals for text data:

$ lm-zoo get-surprisals ngram metamorphosis.txt
sentence_id     token_id        token   surprisal
1       1       one     7.76847
1       2       morning 9.40638
1       3       ,       1.05009
1       4       when    7.08489
1       5       gregor  18.8963
1       6       <unk>   4.27466
1       7       woke    19.0607
1       8       from    10.3404
1       9       troubled        17.478
1       10      dreams  10.671
1       11      ,       3.39374
1       12      he      5.99193
1       13      found   8.07358
1       14      himself 2.92718
1       15      transformed     16.7328
1       16      in      5.32057
1       17      his     7.26454
1       18      bed     9.78166
1       19      into    8.90954
1       20      a       3.72355
1       21      horrible        14.2477
1       22      <unk>   3.56907
1       23      .       3.90242
1       24      </s>    22.8395
2       1       he      4.43708
2       2       lay     14.1721
...

For more information, see our Quickstart tutorial.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lm-zoo-1.2.tar.gz (17.0 kB view details)

Uploaded Source

File details

Details for the file lm-zoo-1.2.tar.gz.

File metadata

  • Download URL: lm-zoo-1.2.tar.gz
  • Upload date:
  • Size: 17.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6

File hashes

Hashes for lm-zoo-1.2.tar.gz
Algorithm Hash digest
SHA256 c43f664f1185398045505dd433ebb6e5a08f562b1fdf97a8fbc04d4e9c88a652
MD5 efaf6a4945265ce427972be7f70622a4
BLAKE2b-256 242c891e3676078884019b58bab429c73e39fba9fb5dd67e1fc4eecfb8b958c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page