Skip to main content

Diagnostic Plots for Lineare Regression Models. Similar to plot.lm in R.

Project description

Python Library providing Diagnostic Plots for Lineare Regression Models. (Like plot.lm in R.)

I built this, because I missed the diagnostics plots of R for a university project. There are some substitutions in Python for individual charts, but they are spread over different libraries and sometimes don’t show the exact same. My implementation tries to copycat the R-plots, but I didn’t reimplement the R-code: The charts are just based on available documentation.

Installation

Available in PyPi: https://pypi.org/project/lmdiag/

  • Using pip: pip install lmdiag

  • Using pipenv: pipenv install lmdiag

Usage

The plots need a fitted Linear Regression Model created by statsmodels as input.

Example

(See also the more extensive Example Notebook)

import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
import lmdiag

%matplotlib inline  # In Jupyter

# Generate sample model
np.random.seed(20)
predictor = np.random.normal(size=30, loc=20, scale=3)
response = 5 + 5 * predictor + np.random.normal(size=30)
X = sm.add_constant(predictor)
lm = sm.OLS(response, X).fit()

# Plot chart matrix (and enlarge figure)
plt.figure(figsize=(10,7))
lmdiag.plot(lm);
https://raw.githubusercontent.com/dynobo/lmdiag/master/example.png

Methods

  • Draw matrix of all plots:

    lmdiag.plot(lm)

  • Draw individual plots:

    lmdiag.resid_fit(lm)

    lmdiag.q_q(lm)

    lmdiag.scale_loc(lm)

    lmdiag.resid_lev(lm)

  • Print useful descriptions for interpretations:

    lmdiag.info() (for all plots)

    lmdiag.info('<method name>') (for individual plot)

Development

Disclaimer

This is my very first public python library. Don’t expect everything to work smoothly. I’m happy to receive useful feedback or pull requests.

Certification

https://raw.githubusercontent.com/dynobo/lmdiag/master/badge.png

Packaging and Upload to PyPi

  • pipenv run rstcheck README.rst (check syntax)

  • rm -rf ./dist (delete old builds)

  • python setup.py sdist

  • python setup.py bdist_wheel

  • twine upload dist/*

  • Then new release on github…

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lmdiag-0.2.0.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

lmdiag-0.2.0-py3-none-any.whl (6.5 kB view details)

Uploaded Python 3

File details

Details for the file lmdiag-0.2.0.tar.gz.

File metadata

  • Download URL: lmdiag-0.2.0.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for lmdiag-0.2.0.tar.gz
Algorithm Hash digest
SHA256 807e446d42cfa8accfad3bde47772f8718333b4bdf68e97894cc05998a17cdef
MD5 d18e6417dceeb793e093299551625491
BLAKE2b-256 65de38a2e53fe905d353f53102e633c8a7adec13418a21d5e23e57676bc5983f

See more details on using hashes here.

File details

Details for the file lmdiag-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for lmdiag-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 014e28e4e76b47dc1df99ef7696b48d9411f50d6702c8dc3f9b13036665d346a
MD5 5891d6427a38d04595cc9152d39383dc
BLAKE2b-256 80cbd9c27e8235b4be5788b552672e7adeae571b35876bdd4b5ef6c32fa8aa7f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page