Skip to main content

Diagnostic Plots for Lineare Regression Models. Similar to plot.lm in R.

Project description

Python Library providing Diagnostic Plots for Lineare Regression Models. (Like plot.lm in R.)

I built this, because I missed the diagnostics plots of R for a university project. There are some substitutions in Python for individual charts, but they are spread over different libraries and sometimes don’t show the exact same. My implementation tries to copycat the R-plots, but I didn’t reimplement the R-code: The charts are just based on available documentation.

Installation

Available in PyPi: https://pypi.org/project/lmdiag/

  • Using pip: pip install lmdiag

  • Using pipenv: pipenv install lmdiag

Usage

The plots need a fitted Linear Regression Model created by statsmodels as input.

Example

(See also the more extensive Example Notebook)

import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
import lmdiag

%matplotlib inline  # In Jupyter

# Generate sample model
np.random.seed(20)
predictor = np.random.normal(size=30, loc=20, scale=3)
response = 5 + 5 * predictor + np.random.normal(size=30)
X = sm.add_constant(predictor)
lm = sm.OLS(response, X).fit()

# Plot chart matrix (and enlarge figure)
plt.figure(figsize=(10,7))
lmdiag.plot(lm);
https://raw.githubusercontent.com/dynobo/lmdiag/master/example.png

Methods

  • Draw matrix of all plots:

    lmdiag.plot(lm)

  • Draw individual plots:

    lmdiag.resid_fit(lm)

    lmdiag.q_q(lm)

    lmdiag.scale_loc(lm)

    lmdiag.resid_lev(lm)

  • Print useful descriptions for interpretations:

    lmdiag.info() (for all plots)

    lmdiag.info('<method name>') (for individual plot)

Development

Disclaimer

This is my very first public python library. Don’t expect everything to work smoothly. I’m happy to receive useful feedback or pull requests.

Certification

https://raw.githubusercontent.com/dynobo/lmdiag/master/badge.png

Packaging and Upload to PyPi

  • pipenv run rstcheck README.rst (check syntax)

  • rm -rf ./dist (delete old builds)

  • python setup.py sdist

  • python setup.py bdist_wheel

  • twine upload dist/*

  • Then new release on github…

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lmdiag-0.3.0.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

lmdiag-0.3.0-py3-none-any.whl (6.5 kB view details)

Uploaded Python 3

File details

Details for the file lmdiag-0.3.0.tar.gz.

File metadata

  • Download URL: lmdiag-0.3.0.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for lmdiag-0.3.0.tar.gz
Algorithm Hash digest
SHA256 75f235b48c3af32776b0b7b64dfaa5fd63b9f7a1ee18a1d04b56cb7db54957fe
MD5 95161a0e452083832c16b935b28fef70
BLAKE2b-256 5180ef2cecda6f670daf93ca1b327975cba1bc2f86189198639165fcefd8b2ff

See more details on using hashes here.

File details

Details for the file lmdiag-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for lmdiag-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 084171438d2041e6b10ed14c4cea3836096dfc8fbc1139b264987bf32f30978f
MD5 bef17bc98ea8d80ede0c836dfdc32a25
BLAKE2b-256 c1dde9c553a0bce77230ef4c94eab285de311b007783bff1fd0a2cdb4ca050ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page