Skip to main content

Pythonic interface to various backend ecosystems related geospatial data.

Project description

LMIPy

The Vizzuality Ecosystem Python Interface

Build Status codecov PyPI Documentation Status License

LMIPy is a Python library with hooks to Jupyter, backed by the Skydipper API. It provides many functions related to adding, analysing and working with open geospatial datasets.

Read the Docs

Read the docs pages.

Installation

pip install LMIPy

Use

$ python
>>> import LMIPy

Create a Dataset object based on an existing ID on default (RW) server.

>>> ds = Dataset('044f4af8-be72-4999-b7dd-13434fc4a394')
>>> print(ds)
Dataset 044f4af8-be72-4999-b7dd-13434fc4a394

Create a Layer object based on an existing ID on default (RW) server.

>>> ly = Layer(id_hash='dc6f6dd2-0718-4e41-81d2-109866bb9edd')
>>> print(ly)
Layer dc6f6dd2-0718-4e41-81d2-109866bb9edd

Create a Table object based on an existing ID.

>>> table = Table('fbf159d7-a462-4af3-8228-43ee3e3391e7')
# return the head of the table as a geopandas dataframe
>>> df = table.head(5)
# return a query of the table as a geopandas dataframe
>>> result = table.query(sql='SELECT count(*) as my_count FROM data WHERE year > 1991 and year < 1995' )

Obtain a collection of objects using a search term.

>>> col = Collection(search='tree',object_type=['dataset'], app=['gfw'],limit=5)
>>> print(col)
[Dataset 70e2549c-d722-44a6-a8d7-4a385d78565e, Dataset 897ecc76-2308-4c51-aeb3-495de0bdca79, Dataset 89755b9f-df05-4e22-a9bc-05217c8eafc8, Dataset 83f8365b-f40b-4b91-87d6-829425093da1, Dataset 044f4af8-be72-4999-b7dd-13434fc4a394]

Check the docs for more info!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

LMIPy-0.6.2.tar.gz (36.4 kB view details)

Uploaded Source

Built Distribution

LMIPy-0.6.2-py3-none-any.whl (44.6 kB view details)

Uploaded Python 3

File details

Details for the file LMIPy-0.6.2.tar.gz.

File metadata

  • Download URL: LMIPy-0.6.2.tar.gz
  • Upload date:
  • Size: 36.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/3.6.2

File hashes

Hashes for LMIPy-0.6.2.tar.gz
Algorithm Hash digest
SHA256 0666d39be3b4c996321f57a5f489a92bae25f092f2f91c70bff759715cad3af7
MD5 4f2d63d63b817d764ba991789c99d3a1
BLAKE2b-256 37da721f1abf00f1583b0edc48553286c9fd1c9cb164db00ca82941c34c54320

See more details on using hashes here.

File details

Details for the file LMIPy-0.6.2-py3-none-any.whl.

File metadata

  • Download URL: LMIPy-0.6.2-py3-none-any.whl
  • Upload date:
  • Size: 44.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/3.6.2

File hashes

Hashes for LMIPy-0.6.2-py3-none-any.whl
Algorithm Hash digest
SHA256 97aaa635562ad5e924e65796d5eb0b11531838ef1c30d295c873e48f4af2d318
MD5 2efbe492dffc9a68efbf659f8b4f16cf
BLAKE2b-256 0888d1cc534091d88ce0ea9db31d5fe543602335dbd6dfe66ea6b8d16187aef3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page