Skip to main content

exceptions

Project description

lmsg

Developer Guide

Setup

# create conda environment
$ mamba env create -f env.yml

# update conda environment
$ mamba env update -n lmsg --file env.yml

Install

pip install -e .

# install from pypi
pip install lmsg

nbdev

# activate conda environment
$ conda activate lmsg

# make sure the lmsg package is installed in development mode
$ pip install -e .

# make changes under nbs/ directory
# ...

# compile to have changes apply to the lmsg package
$ nbdev_prepare

Publishing

# publish to pypi
$ nbdev_pypi

# publish to conda
$ nbdev_conda --build_args '-c conda-forge'
$ nbdev_conda --mambabuild --build_args '-c conda-forge -c dsm-72'

Usage

Installation

Install latest from the GitHub repository:

$ pip install git+https://github.com/dsm-72/lmsg.git

or from conda

$ conda install -c dsm-72 lmsg

or from pypi

$ pip install lmsg

Documentation

Documentation can be found hosted on GitHub repository pages. Additionally you can find package manager specific guidelines on conda and pypi respectively.

NumPy Documentation:

PyTorch Documentation:

PyTorch Models to Consider:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lmsg-0.0.4.tar.gz (18.2 kB view details)

Uploaded Source

Built Distribution

lmsg-0.0.4-py3-none-any.whl (18.8 kB view details)

Uploaded Python 3

File details

Details for the file lmsg-0.0.4.tar.gz.

File metadata

  • Download URL: lmsg-0.0.4.tar.gz
  • Upload date:
  • Size: 18.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for lmsg-0.0.4.tar.gz
Algorithm Hash digest
SHA256 b9deda209a58d3803f3e7bfa1ab59bf7e855ba5d3bab48717e9814f762fda4c4
MD5 9b230c48980af600b4c228984c18e5b3
BLAKE2b-256 2214af4d12343f8f7281a64ed0352d4b7f73d190b86345f7c6f73c13f58c00c9

See more details on using hashes here.

File details

Details for the file lmsg-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: lmsg-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 18.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for lmsg-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 fc089fed67a0611d80e24c778d411dbb4e21d4d6063f05e5ac43be367f491801
MD5 55e908cfa7bf727f5814ff82799e624e
BLAKE2b-256 f7032f883210dda23550ebe7733effa9ae203ddda8b544e445addce9b6bfbb5a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page