Skip to main content

Lobe Python SDK

Project description

Lobe Python API

Code to run exported Lobe models in Python using the TensorFlow, TensorFlow Lite, or ONNX options.

Works with Python 3.6, 3.7, and 3.8 untested for other versions.

Install

Backend options with pip

You can install each of the backends on an individual basis, or all together through pip like so:

# For all of the supported backends (TensorFlow, TensorFlow Lite, ONNX)
pip install lobe[all]

# For TensorFlow only
pip install lobe[tf]

# For TensorFlow Lite only -- this requires two steps for the runtime and for lobe (note for Raspberry Pi see our setup script in scripts/lobe-rpi-install.sh)
pip install --index-url https://google-coral.github.io/py-repo/ tflite_runtime 
pip install lobe

# For ONNX only
pip install lobe[onnx]

Installing lobe-python without any options (pip install lobe) will only install the base requirements, no backends will be installed. If you try to load a model with a backend that hasn't been installed, an error message will show you the instructions to install the correct backend.

Linux

Before running these commands, make sure that you have git installed.

# Install Python3
sudo apt update
sudo apt install -y python3-dev python3-pip

# Install Pillow dependencies
sudo apt update
sudo apt install -y libatlas-base-dev libopenjp2-7 libtiff5 libjpeg62-dev

# Install lobe-python
pip3 install setuptools
# Swap out the 'all' option here for your desired backend from 'backend options with pip' above.
pip3 install lobe[all]

For Raspberry Pi OS (Raspian) run:

cd ~
wget https://raw.githubusercontent.com/lobe/lobe-python/master/scripts/lobe-rpi-install.sh
sudo ./lobe-rpi-install.sh

Mac/Windows

We recommend using a virtual environment:

python3 -m venv .venv

# Mac:
source .venv/bin/activate

# Windows:
.venv\Scripts\activate

Install the library

# Make sure pip is up to date
python -m pip install --upgrade pip
# Swap out the 'all' option here for your desired backend from 'backend options with pip' above.
pip install lobe[all]

Usage

from lobe import ImageModel

model = ImageModel.load('path/to/exported/model/folder')

# OPTION 1: Predict from an image file
result = model.predict_from_file('path/to/file.jpg')

# OPTION 2: Predict from an image url
result = model.predict_from_url('http://url/to/file.jpg')

# OPTION 3: Predict from Pillow image
from PIL import Image
img = Image.open('path/to/file.jpg')
result = model.predict(img)

# Print top prediction
print(result.prediction)

# Print all classes
for label, confidence in result.labels:
    print(f"{label}: {confidence*100}%")

Note: model predict functions should be thread-safe. If you find bugs please file an issue.

Resources

See the Raspberry Pi Trash Classifier example, and its Adafruit Tutorial.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lobe-0.5.0.tar.gz (13.2 kB view details)

Uploaded Source

Built Distribution

lobe-0.5.0-py3-none-any.whl (15.8 kB view details)

Uploaded Python 3

File details

Details for the file lobe-0.5.0.tar.gz.

File metadata

  • Download URL: lobe-0.5.0.tar.gz
  • Upload date:
  • Size: 13.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lobe-0.5.0.tar.gz
Algorithm Hash digest
SHA256 847bc9b3a620bf24f2b9669142a83be2948cff70ebfeb2dd2ac99af53a6cb071
MD5 87c671334982885ece458171e12a2971
BLAKE2b-256 4f38df643b3c0fbda3a1a60a45ed6739a1ec8d53bf5acf429797155e2e56eaaa

See more details on using hashes here.

File details

Details for the file lobe-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: lobe-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 15.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lobe-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a4e2afa984186c0fdf3f5bb995c4f8e409106fd48204619c4daf4969cda955ee
MD5 8e73a5c6f8965a5ee68de22b97d0360a
BLAKE2b-256 48b50621ad4fe704dea6aae3b5bcbebe9a7e59b76504f9270135630dc21d2a83

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page