Skip to main content

DIY image retrieval with spatial verification

Project description

Hands-on wide baseline tutorial

Summary description here.

We will create the wide baseline stereo mather and try it on various images with various features. There is also a a (naive) example of the spatial verification together with image retrieval. We will not build the components from scratch, instead will be using a ready packages, like kornia, pydegensac and OpenCV

Install

pip install local_feature_tutorial

How to use

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from local_feature_tutorial.wbs import *
from local_feature_tutorial.visualization import *
from local_feature_tutorial.io import *
from local_feature_tutorial.datasets import *
import cv2

hard_images_to_match = 'http://cmp.felk.cvut.cz/~mishkdmy/wbs_illum.tgz'
fname = download_file(hard_images_to_match)


untar_to(fname, 'data/wbs')

wbs_img_fnames = get_all_images_in_subdirs('data/wbs')
print (wbs_img_fnames)

visualize_grid(wbs_img_fnames, (8,8))
['data/wbs/chimera_01.png', 'data/wbs/chimera_02.png', 'data/wbs/dh_01.png', 'data/wbs/dh_02.png', 'data/wbs/doll_theater1.jpeg', 'data/wbs/doll_theater2.jpeg', 'data/wbs/doll_theater3.jpeg', 'data/wbs/kn_church-2.jpg', 'data/wbs/kn_church-8.jpg', 'data/wbs/ministry_01.png', 'data/wbs/ministry_02.png', 'data/wbs/ministry_03.png', 'data/wbs/purkine-2.jpg', 'data/wbs/purkine-4.jpg']

png

sift_hardnet_matcher = TwoViewMatcher(detector=cv2.SIFT_create(8000), descriptor=HardNetDesc(),
                              matcher=SNNMMatcher(0.9), geom_verif=degensac_Verifier(0.5))

res = sift_hardnet_matcher.verify(wbs_img_fnames[7], wbs_img_fnames[8])
print (res.keys())
draw_matches(res['match_kpts1'], res['match_kpts2'],
                wbs_img_fnames[7], wbs_img_fnames[8], color=(0,255,0), R=10)
dict_keys(['match_kpts1', 'match_kpts2', 'F', 'num_inl'])

png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

local_feature_tutorial-0.0.3.tar.gz (19.8 kB view details)

Uploaded Source

Built Distribution

local_feature_tutorial-0.0.3-py3-none-any.whl (19.5 kB view details)

Uploaded Python 3

File details

Details for the file local_feature_tutorial-0.0.3.tar.gz.

File metadata

  • Download URL: local_feature_tutorial-0.0.3.tar.gz
  • Upload date:
  • Size: 19.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0.post20200127 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.7.4

File hashes

Hashes for local_feature_tutorial-0.0.3.tar.gz
Algorithm Hash digest
SHA256 62d0be66672da33fe92d5fb2d8a3cef97ae515b775e42fb6bcc77023741fcd23
MD5 64d674a61171fff4bff6d46c948f3d4e
BLAKE2b-256 9fcd6a06a96f8753fc22e9ff69683ad864eae2029b9d05c1561d8266755fba66

See more details on using hashes here.

File details

Details for the file local_feature_tutorial-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: local_feature_tutorial-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 19.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0.post20200127 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.7.4

File hashes

Hashes for local_feature_tutorial-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 66b6addd9659620f8d80fd31f520d160c38846475148e886c25fe8c807e14dfc
MD5 a1ba3b978216ee8c4c8c505c37f05220
BLAKE2b-256 37c1ed48ea7588aaadbd2464223168400020467e170b47e7080988bfb7430ab7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page