Skip to main content

Embeddable high-performance analytics database.

Project description

LocustDB

Build Status Crates.io Gitter

An experimental analytics database aiming to set a new standard for query performance and storage efficiency on commodity hardware. See How to Analyze Billions of Records per Second on a Single Desktop PC and How to Read 100s of Millions of Records per Second from a Single Disk for an overview of current capabilities.

Usage

Download the latest binary release, which can be run from the command line on most x64 Linux systems, including Windows Subsystem for Linux. For example, to load the file test_data/nyc-taxi.csv.gz in this repository and start the repl run:

./locustdb --load test_data/nyc-taxi.csv.gz --trips

When loading .csv or .csv.gz files with --load, the first line of each file is assumed to be a header containing the names for all columns. The type of each column will be derived automatically, but this might break for columns that contain a mixture of numbers/strings/empty entries.

To persist data to disk in LocustDB's internal storage format (which allows fast queries from disk after the initial load), specify the storage location with --db-path When creating/opening a persistent database, LocustDB will open a lot of files and might crash if the limit on the number of open files is too low. On Linux, you can check the current limit with ulimit -n and set a new limit with e.g. ulimit -n 4096.

The --trips flag will configure the ingestion schema for loading the 1.46 billion taxi ride dataset which can be downloaded here.

For additional usage info, invoke with --help:

$ ./locustdb --help
LocustDB 0.2.1
Clemens Winter <clemenswinter1@gmail.com>
Massively parallel, high performance analytics database that will rapidly devour all of your data.

USAGE:
    locustdb [FLAGS] [OPTIONS]

FLAGS:
    -h, --help             Prints help information
        --mem-lz4          Keep data cached in memory lz4 encoded. Decreases memory usage and query speeds.
        --reduced-trips    Set ingestion schema for select set of columns from nyc taxi ride dataset
        --seq-disk-read    Improves performance on HDD, can hurt performance on SSD.
        --trips            Set ingestion schema for nyc taxi ride dataset
    -V, --version          Prints version information

OPTIONS:
        --db-path <PATH>           Path to data directory
        --load <FILES>             Load .csv or .csv.gz files into the database
        --mem-limit-tables <GB>    Limit for in-memory size of tables in GiB [default: 8]
        --partition-size <ROWS>    Number of rows per partition when loading new data [default: 65536]
        --readahead <MB>           How much data to load at a time when reading from disk during queries in MiB
                                   [default: 256]
        --schema <SCHEMA>          Comma separated list specifying the types and (optionally) names of all columns in
                                   files specified by `--load` option.
                                   Valid types: `s`, `string`, `i`, `integer`, `ns` (nullable string), `ni` (nullable
                                   integer)
                                   Example schema without column names: `int,string,string,string,int`
                                   Example schema with column names: `name:s,age:i,country:s`
        --table <NAME>             Name for the table populated with --load [default: default]
        --threads <INTEGER>        Number of worker threads. [default: number of cores (12)]

Goals

A vision for LocustDB.

Fast

Query performance for analytics workloads is best-in-class on commodity hardware, both for data cached in memory and for data read from disk.

Cost-efficient

LocustDB automatically achieves spectacular compression ratios, has minimal indexing overhead, and requires less machines to store the same amount of data than any other system. The trade-off between performance and storage efficiency is configurable.

Low latency

New data is available for queries within seconds.

Scalable

LocustDB scales seamlessly from a single machine to large clusters.

Flexible and easy to use

LocustDB should be usable with minimal configuration or schema-setup as:

  • a highly available distributed analytics system continuously ingesting data and executing queries
  • a commandline tool/repl for loading and analysing data from CSV files
  • an embedded database/query engine included in other Rust programs via cargo

Non-goals

Until LocustDB is production ready these are distractions at best, if not wholly incompatible with the main goals.

Strong consistency and durability guarantees

  • small amounts of data may be lost during ingestion
  • when a node is unavailable, queries may return incomplete results
  • results returned by queries may not represent a consistent snapshot

High QPS

LocustDB does not efficiently execute queries inserting or operating on small amounts of data.

Full SQL support

  • All data is append only and can only be deleted/expired in bulk.
  • LocustDB does not support queries that cannot be evaluated independently by each node (large joins, complex subqueries, precise set sizes, precise top n).

Support for cost-inefficient or specialised hardware

LocustDB does not run on GPUs.

Compiling from source

  1. Install Rust: rustup.rs
  2. Clone the repository
git clone https://github.com/cswinter/LocustDB.git
cd LocustDB
  1. Compile with --release for optimal performance:
cargo run --release --bin repl -- --load test_data/nyc-taxi.csv.gz --reduced-trips

Running tests or benchmarks

cargo test

cargo bench

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

locustdb-0.5.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

locustdb-0.5.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

locustdb-0.5.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

locustdb-0.5.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

locustdb-0.5.5-cp312-none-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

locustdb-0.5.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

locustdb-0.5.5-cp312-cp312-macosx_11_0_arm64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

locustdb-0.5.5-cp312-cp312-macosx_10_12_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

locustdb-0.5.5-cp311-none-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

locustdb-0.5.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

locustdb-0.5.5-cp311-cp311-macosx_11_0_arm64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

locustdb-0.5.5-cp311-cp311-macosx_10_12_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

locustdb-0.5.5-cp310-none-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

locustdb-0.5.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

locustdb-0.5.5-cp310-cp310-macosx_11_0_arm64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

locustdb-0.5.5-cp310-cp310-macosx_10_12_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

locustdb-0.5.5-cp39-none-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

locustdb-0.5.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

locustdb-0.5.5-cp39-cp39-macosx_11_0_arm64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

locustdb-0.5.5-cp39-cp39-macosx_10_12_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

locustdb-0.5.5-cp38-none-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

locustdb-0.5.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

locustdb-0.5.5-cp38-cp38-macosx_11_0_arm64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

locustdb-0.5.5-cp38-cp38-macosx_10_12_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

locustdb-0.5.5-cp37-none-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.7 Windows x86-64

locustdb-0.5.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file locustdb-0.5.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 730f30db2b27698fb2c989bad839cb6e9cf233f2fcc71b90d0593b7af3a170c3
MD5 889e3e11180ac92ba6a74fb1f885e67b
BLAKE2b-256 375bd13aa0dfd09eee39692b6e99c6c973467d68a69ac92cec67eccc1c1d02cc

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 500724ba65c62085b49ec4ebf75aae69c4004b6f425992c997a6d0121abe3a44
MD5 fc8cbb61e5a8f5c3fd55c4bd9d31dde1
BLAKE2b-256 b060b44e1a57f9d932c4726af9068a8786e3df10f987ed014877871163d8d024

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf8fcdf70711295d885a531de8758c67492f1570f221195c35127d08bb5e4d32
MD5 bb45246d28c1e12e86ee56d6dae47512
BLAKE2b-256 c9105975bd6dc43157b8429e3c7b35b89f81beb514858024c2e667bf74334c58

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c0cea75736e6703100fb62aecc2b4a78cf0e392a3264963e7ef981ac6e13c93
MD5 5b600d4e03e0e85e006817bcbd057ca8
BLAKE2b-256 c017043ce27a49cd8dbcc3070670404d067b9e2b81cd220b833fb189a6d8b8f0

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 f06a687e3381e88a3b1895428fe697304e2837bd7b1c71deff0ea359d8ef4f24
MD5 ab3d2d1406a6dce0b99b1a8ce0fbcaab
BLAKE2b-256 6d6908061e2014dc0ecdba270df3290ee0a3efc8f7d16394aaf00907d9567512

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e12360091a0e7bd49a7a9712854881afb305bd90beafc6851e4127814327b6b7
MD5 b0fb14363143b5c982d0bacacc2e75a5
BLAKE2b-256 231a076f06b8e8cd47c431cda759a96cf321b1eb8b10e4d03e8154e8545ddd00

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ec1a2a3e48aa328c514a4c127cbfb15fd4982ba07553e590923497187db33171
MD5 2de29e5208b611a6472f138073156088
BLAKE2b-256 c4d310be2235fcc2740c66fd42250ec3603703a02073d314e005a319d725fda5

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 6166744633fc37ef2118d6192eaccb4bdd75954a2631633530d7a9f56b1d88e6
MD5 63a607e329712bfd36bd1b84d8adb2c4
BLAKE2b-256 d849127c8c963b005a8a5018a348cb7c8f67697bab62f96832a031383a1bb60b

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 315fd848ab821d896c05c5b85bb52a3227edd3f0f76c4992a40473c4c07da579
MD5 b3f71e30a6dc6cad7499705eb2cfb1ef
BLAKE2b-256 3b032593527e12c4817088790884fc48f14f05309e164e66662abeac264a8b37

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e73cd20e455ba59098c8817074d4dad60485bc15508c1dab0d9d4a1dac625220
MD5 99f9cf2466998410d95af0080011d269
BLAKE2b-256 4444082dc4348995c502b08137f66e3e77a9a87f14ea72f1c8557d51623b6c28

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2b5c8e59c6a92cc15785e5f57d1ccfed8aeda3896564659242b0706bbf12b194
MD5 f8ec681d3c0118d675d52ce1f5082c44
BLAKE2b-256 2e4cfbcecb1099f43071079a29d73944b1b8b42b1129ca9c0c23317146573402

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 5f1729032431a7bfe555a06d2e4e620a046060dcdd0c2c349ea7bfdd1aeda5b7
MD5 3dbdd2114196cdda3e0f607073c71575
BLAKE2b-256 a1323a7fe87b7e45827c9b24f66328c11edcfd77e8a65f107e85cffcdfd9f5cd

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 a21ccdee0f159eb47a0eb6f90b6a39e3a5d3248c5eb23f5c72f503781e3db672
MD5 c38ccd8f7dab6563fe73dd551d154e0e
BLAKE2b-256 e33a50d67fad71d8feff46e67ecb2f6923e8eaeff7e090c09140a6af952b9013

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a60d0cca3fa8fa02b634211eee350f135e03187d92dc1dd002f566dcd0895530
MD5 abc9825888b2e74d8537e53596cf1190
BLAKE2b-256 24d1a80a759f6975b79c2a41f9c890c07b109255c045e48b817dc67870964cc9

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c31c36de5db8f18a1eeb083b769be5c6af824bfedfcf923a001fbf1787eead17
MD5 01dfcf76c9b22ad18f3d1dd02407669d
BLAKE2b-256 6acc2a554458f28bf9b165b32428753ccc3d25db5d5f7543c9dc1f255b08b276

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d10a8f4ba7583ff126c64040d90fd81cd2a59833112d28c8677907adae99d756
MD5 8204ae3b60f91cb7874d5f8e743a2fe7
BLAKE2b-256 f99968ab9338b80006f37b4b07daa573ffe78d1c8eb08b62902075ffe9056fe7

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 f35a98c008ce1ec1ca6800c670980e496e257d197c5ef87dcc1759171e3da48e
MD5 2421b1478b238690aae892f5521f3140
BLAKE2b-256 2a0c0f7c172c8d95a78b790bbb917678a2529d1f6b649688b0922a89c63bb9ce

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3732d99f7c51c02e47a801f84e37555946649e6a94fe3cdf42bf3958b8bd81a0
MD5 0cbf12cd461b724387b9f1dde0d5b5df
BLAKE2b-256 90200cf2bbfb8367a07816f56eb7fbc3ce154348da4042c8894c25cf13ac3922

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7528b02679c69cd12ca883959673131125779381e7651df09f6d98503e0db519
MD5 caa2d49766017cb505eff5441e454bf6
BLAKE2b-256 18ab95ad906930e258708e979730ad1fc039ba10d215a16f827ec6bacaba3b93

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 b078dac4087dfc67609fba8730d6b22362c0f081f5c9f04bf9e1ab369b47d15b
MD5 460b02f4445d7ec8ac2b2b381b453d32
BLAKE2b-256 7c28562dccaa14a5716623958e63fc617c838cc35abdf475028b1b2e6b34d61c

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 99072b124afd7e8b60e1b25fe14651c71928489c7c01ada536abff724dfe706c
MD5 d754d67cb35a0fd3f210ae143a15f8a9
BLAKE2b-256 90a2f90888c48db92b9273db637a6266ec4d3ea5963613bbc3914ce0feedfa61

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f33b3cc5a999354bb6fe42a4b05401cf1e6c2ea488e14cbac7031d91300e0a0
MD5 65a7051e248e57c928a24f7335aa8d5c
BLAKE2b-256 a1c5bb0a4835f0a42211a0a22b1b1c1c31718ba1f61b0c1aa979d42515deb5fb

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 733d6d6e7e9cd6d4eab175987c241d9cb31429e7c585699e3e3446a71d9fc485
MD5 323b3c9d1ce32f73b0ab7fc5c8ed78cc
BLAKE2b-256 f532d45161599bc500587b3a17890b187dfbf65463d98713cc339f8d290d850f

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 7e53bc32f139247da46d76e65c9ce90a0cec43b7b731d4f5d5adc6a344177424
MD5 5a28d85a4002b7612a127a1f9739999f
BLAKE2b-256 e371e6871d0e3bbe70c2d8620a811ac12d82212de9fce1399fe3d2dc4cc73450

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 5d8260405775847eb103fd49f5be9369f51534b9c6172ba459b075011327a19f
MD5 362e6dfc3868a71b808db5c8df4f60d4
BLAKE2b-256 603f835e4255fe3db0b4d39eeac4e8231e5fd5f7f12462de28dc9977236d5f46

See more details on using hashes here.

File details

Details for the file locustdb-0.5.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for locustdb-0.5.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 52a0980589dba1bb2f236d9b50652a3a7ceb7298fb08d5842cbb3e7b070a5c6d
MD5 3083b22860c1e4e6048b6f91b28d8335
BLAKE2b-256 765b38b6b94cd42914373a477ec39948cd816d1212e809e69570295478e5aa70

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page