Skip to main content

Provide function to calculate the modified Bessel function of the second kind

Project description

logbesselk

Provide function to calculate the modified Bessel function of the second kind and its derivatives.

Reference

Takashi Takekawa, Fast parallel calculation of modified Bessel function of the second kind and its derivatives, SoftwareX, 17, 100923, 2022.

Author

TAKEKAWA Takashi takekawa@tk2lab.org

For Tensorflow

Require

  • Python (>=3.10)
  • Tensorflow (>=2.8)

Installation

pip install tensorflow logbesselk

Examples

import tensorflow as tf
from logbesselk.tensorflow import log_bessel_k as logk
from logbesselk.tensorflow import bessel_ke as ke
from logbesselk.tensorflow import bessel_kratio as kratio

v = 1.0
x = 1.0
a = logk(v, x)

v = tf.linspace(1, 10, 10)
x = tf.linspace(1, 10, 10)
b = logk(v, x)

# gradient
with tf.GradientTape() as g:
    g.watch(v, x)
    f = logk(v, x)
dlogkdv = g.gradient(f, v)
dlogkdx = g.gradient(f, x)

# use tf.function
logk = tf.function(logk)

# advanced version
from logbesselk.tensorflow import log_abs_deriv_bessel_k

logk = lambda v, x: log_abs_deriv_bessel_k(v, x, 0, 0)
logdkdv = lambda v, x: log_abs_deriv_bessel_k(v, x, 1, 0)
logdkdx = lambda v, x: log_abs_deriv_bessel_k(v, x, 0, 1)

For jax

Require

  • Python (>=3.10)
  • jax (>=0.4)

Installation

pip install jax[cuda] -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
pip install logbesselk

Examples

import jax
import jax.numpy as jnp
from logbesselk.jax import log_bessel_k as logk
from logbesselk.jax import bessel_ke as ke
from logbesselk.jax import bessel_kratio as kratio

# scalar func and grad
v = 1.0
x = 1.0
a = logk(v, x)

# dlogK/dv = (dK/dv) / K
dlogkdv = jax.grad(logk, 0)
b = dlogkdv(v, x)

# dlogK/dx = (dK/dx) / K
dlogkdx = jax.grad(logk, 1)
c = dlogkdx(v, x)

# misc
d = ke(v, x)
e = kratio(v, x, d=1)

# vectorize
logk_vec = jax.vmap(logk)

v = jnp.linspace(1, 10, 10)
x = jnp.linspace(1, 10, 10)
f = logk_vec(v)

# use jit
logk_vec_jit = jax.jit(logk_vec)

# advanced version
from logbesselk.jax import log_abs_devel_bessel_k

log_dkdv = lambda v, x: log_abs_deriv_bessel_k(v, x, 1, 0)
log_dkdx = lambda v, x: log_abs_deriv_bessel_k(v, x, 0, 1)

log_dkdv_jit = jax.jit(jax.vmap(log_dkdv))
log_dkdx_jit = jax.jit(jax.vmap(log_dkdx))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

logbesselk-3.4.0.tar.gz (937.1 kB view details)

Uploaded Source

Built Distribution

logbesselk-3.4.0-py3-none-any.whl (24.3 kB view details)

Uploaded Python 3

File details

Details for the file logbesselk-3.4.0.tar.gz.

File metadata

  • Download URL: logbesselk-3.4.0.tar.gz
  • Upload date:
  • Size: 937.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for logbesselk-3.4.0.tar.gz
Algorithm Hash digest
SHA256 b57c16f3666d655771f64f0f35c0a026a34195d2908bdf85a0b2eb54603592ac
MD5 d8a5894c76a90055a9ffc434085aec6e
BLAKE2b-256 da452ec3954c97db49471ca32475e8dacbcc45a21241f3251d837c1a7e97ff48

See more details on using hashes here.

File details

Details for the file logbesselk-3.4.0-py3-none-any.whl.

File metadata

  • Download URL: logbesselk-3.4.0-py3-none-any.whl
  • Upload date:
  • Size: 24.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for logbesselk-3.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d6c1eb27cf4899db7f8a5069d346177e8fe96bc0246c92952b98fe58c6e96405
MD5 9cf3259cc86dec080f3bfe688b8b1728
BLAKE2b-256 a99eca7880054596df7a94d4b10f8c1ad42c2e46a2d08d56e11b6d1f298cefc9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page