Skip to main content

Provide function to calculate the modified Bessel function of the second kind

Project description

logbesselk

Provide function to calculate the modified Bessel function of the second kind and its derivatives.

Reference

Takashi Takekawa, Fast parallel calculation of modified Bessel function of the second kind and its derivatives, SoftwareX, 17, 100923, 2022.

Author

TAKEKAWA Takashi takekawa@tk2lab.org

For Tensorflow

Require

  • Python (>=3.8)
  • Tensorflow (>=2.6)

Installation

pip install tensorflow logbesselk

Examples

import tensorflow as tf
from logbesselk.tensorflow import log_bessel_k as logk
from logbesselk.jax import bessel_ke as ke
from logbesselk.jax import bessel_kratio as kratio

v = 1.0
x = 1.0
a = logk(v, x)

v = jnp.linspace(1, 10, 10)
x = jnp.linspace(1, 10, 10)
b = logk(v, x)

# gradient
with tf.GradientTape() as g:
    g.watch(v, x)
    f = logk(v, x)
dlogkdv = g.gradient(f, v)
dlogkdx = g.gradient(f, x)

# use tf.function
logk = tf.function(logk)

# advanced version
from logbesselk.tensorflow import log_abs_deriv_bessel_k

logk = lambda v, x: log_abs_deriv_bessel_k(v, x, 0, 0)
logdkdv = lambda v, x: log_abs_deriv_bessel_k(v, x, 1, 0)
logdkdx = lambda v, x: log_abs_deriv_bessel_k(v, x, 0, 1)

For jax

Require

  • Python (>=3.8)
  • jax (>=0.3)

Installation

pip install jax[cuda] -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
pip install logbesselk

Examples

import jax
import jax.numpy as jnp
from logbesselk.jax import log_bessel_k as logk
from logbesselk.jax import bessel_ke as ke
from logbesselk.jax import bessel_kratio as kratio

# scalar func and grad
v = 1.0
x = 1.0
a = logk(v, x)

# dlogK/dv = (dK/dv) / K
dlogkdv = jax.grad(logk, 0)
b = dlogkdv(v, x)

# dlogK/dx = (dK/dx) / K
dlogkdx = jax.grad(logk, 1)
c = dlogkdx(v, x)

# misc
d = ke(v, x)
e = kratio(v, x, d=1)

# vectorize
logk_vec = jax.vmap(logk)

v = jnp.linspace(1, 10, 10)
x = jnp.linspace(1, 10, 10)
f = logk_vec(v)

# use jit
logk_vec_jit = jax.jit(logk_vec)

# advanced version
from logbesselk.jax import log_abs_devel_bessel_k

log_dkdv = lambda v, x: log_abs_deriv_bessel_k(v, x, 1, 0)
log_dkdx = lambda v, x: log_abs_deriv_bessel_k(v, x, 0, 1)

log_dkdv_jit = jax.jit(jax.vmap(log_dkdv))
log_dkdx_jit = jax.jit(jax.vmap(log_dkdx))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

logbesselk-3.3.0.tar.gz (17.3 kB view details)

Uploaded Source

Built Distribution

logbesselk-3.3.0-py3-none-any.whl (23.6 kB view details)

Uploaded Python 3

File details

Details for the file logbesselk-3.3.0.tar.gz.

File metadata

  • Download URL: logbesselk-3.3.0.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.14 Linux/6.5.0-1021-azure

File hashes

Hashes for logbesselk-3.3.0.tar.gz
Algorithm Hash digest
SHA256 8ea0cb9052bea5449fb7a311092a8cb131d0172046fdc0c6ef5ee2239b49a821
MD5 3425bbcf5fbb1478590f70f3ecfe3e29
BLAKE2b-256 480534fa0ab3e859499df344986554e2554b0a42128e6a90bfca875cf9803c33

See more details on using hashes here.

File details

Details for the file logbesselk-3.3.0-py3-none-any.whl.

File metadata

  • Download URL: logbesselk-3.3.0-py3-none-any.whl
  • Upload date:
  • Size: 23.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.14 Linux/6.5.0-1021-azure

File hashes

Hashes for logbesselk-3.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c9b41ad88f8c90ffed4e3ec52fa62ae32804e4220dcfe166e29430a90e5c2b1f
MD5 ec9c17b6ce06aa62c6e2e37665bb5b2e
BLAKE2b-256 02a5e50b7c84c86cf23751ca53b398b9508b86044655bf6a8b5765ccbf846875

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page