Skip to main content

Provide function to calculate the modified Bessel function of the second kind

Project description

logbesselk

Provide function to calculate the modified Bessel function of the second kind and its derivatives.

Reference

Takashi Takekawa, Fast parallel calculation of modified Bessel function of the second kind and its derivatives, SoftwareX, 17, 100923, 2022.

Author

TAKEKAWA Takashi takekawa@tk2lab.org

For Tensorflow

Require

  • Python (>=3.10)
  • Tensorflow (>=2.8)

Installation

pip install tensorflow logbesselk

Examples

import tensorflow as tf
from logbesselk.tensorflow import log_bessel_k as logk
from logbesselk.tensorflow import bessel_ke as ke
from logbesselk.tensorflow import bessel_kratio as kratio

v = 1.0
x = 1.0
a = logk(v, x)

v = tf.linspace(1, 10, 10)
x = tf.linspace(1, 10, 10)
b = logk(v, x)

# gradient
with tf.GradientTape() as g:
    g.watch(v, x)
    f = logk(v, x)
dlogkdv = g.gradient(f, v)
dlogkdx = g.gradient(f, x)

# use tf.function
logk = tf.function(logk)

# advanced version
from logbesselk.tensorflow import log_abs_deriv_bessel_k

logk = lambda v, x: log_abs_deriv_bessel_k(v, x, 0, 0)
logdkdv = lambda v, x: log_abs_deriv_bessel_k(v, x, 1, 0)
logdkdx = lambda v, x: log_abs_deriv_bessel_k(v, x, 0, 1)

For jax

Require

  • Python (>=3.10)
  • jax (>=0.4)

Installation

pip install jax[cuda] -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
pip install logbesselk

Examples

import jax
import jax.numpy as jnp
from logbesselk.jax import log_bessel_k as logk
from logbesselk.jax import bessel_ke as ke
from logbesselk.jax import bessel_kratio as kratio

# scalar func and grad
v = 1.0
x = 1.0
a = logk(v, x)

# dlogK/dv = (dK/dv) / K
dlogkdv = jax.grad(logk, 0)
b = dlogkdv(v, x)

# dlogK/dx = (dK/dx) / K
dlogkdx = jax.grad(logk, 1)
c = dlogkdx(v, x)

# misc
d = ke(v, x)
e = kratio(v, x, d=1)

# vectorize
logk_vec = jax.vmap(logk)

v = jnp.linspace(1, 10, 10)
x = jnp.linspace(1, 10, 10)
f = logk_vec(v)

# use jit
logk_vec_jit = jax.jit(logk_vec)

# advanced version
from logbesselk.jax import log_abs_devel_bessel_k

log_dkdv = lambda v, x: log_abs_deriv_bessel_k(v, x, 1, 0)
log_dkdx = lambda v, x: log_abs_deriv_bessel_k(v, x, 0, 1)

log_dkdv_jit = jax.jit(jax.vmap(log_dkdv))
log_dkdx_jit = jax.jit(jax.vmap(log_dkdx))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

logbesselk-3.3.1.tar.gz (937.6 kB view details)

Uploaded Source

Built Distribution

logbesselk-3.3.1-py3-none-any.whl (24.2 kB view details)

Uploaded Python 3

File details

Details for the file logbesselk-3.3.1.tar.gz.

File metadata

  • Download URL: logbesselk-3.3.1.tar.gz
  • Upload date:
  • Size: 937.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for logbesselk-3.3.1.tar.gz
Algorithm Hash digest
SHA256 8f6413b30d90e44861694644da688bc2cc578e1eb65e08e9dfe829e07eb37d35
MD5 590cd4ea5ce6514127954964e4b2f9f3
BLAKE2b-256 6ad3533e1720769e29cfa62270a615d0a7ab9a97e230b876d0e46f3634637c5f

See more details on using hashes here.

File details

Details for the file logbesselk-3.3.1-py3-none-any.whl.

File metadata

  • Download URL: logbesselk-3.3.1-py3-none-any.whl
  • Upload date:
  • Size: 24.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for logbesselk-3.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6211da39eab9f64bc865522dab648ad08b43e4c54c7b4df68aa37158eb542f37
MD5 859ec2169cb3bb933eebc3981fc2e4ce
BLAKE2b-256 9dd5cf125d68fa3271fe4791e75e0ec9314cb43446ff50d8e21c0904168fed38

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page