Skip to main content

Python logging utilities

Project description

Python logging utilities

Build Status PyPI version

This package implements some useful logging utilities. Here below are the main features of the package:

  • JSON formatter
  • Flask request context record attributes
  • Jsonify Django request record attribute
  • ISO Time in format YYYY-MM-DDThh:mm:ss.sss±hh:mm
  • Add constant record attributes
  • Logger Level Filter

All features can be fully configured from the configuration file.

NOTE: only python 3 is supported

Table of content

Installation

logging_utilities is available on PyPI.

Use pip to install:

pip install logging-utilities

Contribution

Every contribution to this library is welcome ! So if you find a bug or want to add a new feature everyone is welcome to open an issue or created a Pull Request.

Developer

You can quickly setup your environment with the makefile:

make setup

This will create a virtual python environment with all packages required for the development.

Note that for pull request, the code MUST BE with yapf formatted and it also MUST PASS the linter. For this you can use the make targets:

make format
make lint
#or
make format-lint

Any new feature should have its unittest class in order to be tested.

JSON Formatter

JsonFormatter is a python logging formatter that transform the log output into a json object.

JSON log format is quite useful especially when the logs are sent to LogStash.

This formatter supports embedded object as well as array.

Configure JSON Format

The format can be configured either using the format config parameter or the fmt constructor parameter. This parameter should be a dictionary (for Python version below 3.7, it is better to use OrderedDict to keep the attribute order). Each key is taken as such as key for the output JSON object, while each value is transformed as follow in the output:

Value Type Transformation Example
attribute string The string is a LogRecord attribute name,
then the value of this attribute is used as output.
"message"
str format string The string contains named string format,
each named format are replaced by the corresponding
LogRecord attribute value.
"%(asctime)s.%(msecs)s"
object dict The object is embedded in the output with its value
following the same rules as defined in this table.
{"lineno": "lineno", "file": "filename"}
array list The list is embedded as an array in the output.
Each value is processed using the rules from this table
["created", "asctime"]

You can find the LogRecord attributes list in Python Doc

JSON Formatter Options

You can change some behavior using the JsonFormatter constructor:

Parameter Type Default Description
fmt dict None Define the output format, see Configure JSON Format
datefmt string None Date format for asctime, see time.strftime()
style string % String formatting style, see logging.Formatter
add_always_extra bool False When True, logging extra (logging.log('message', extra={'my-extra': 'some value'})) are always added to the output. Otherwise they are only added if present in fmt.
filter_attributes list None When the formatter is used with a Logging.Filter that adds LogRecord attributes, they can be listed here to avoid to be treated as logging extra.
remove_empty bool False When True, empty values (empty list, dict, None or empty string) are removed from output.

The constructor parameters can be also be specified in the log configuration file using the () class specifier instead of class:

formatters:
  json:
    (): logging_utilities.formatters.json_formatter.JsonFormatter
    add_always_extra: True
    fmt:
      time: asctime
      level: levelname
      logger: name
      module: module
      message: message

Flask Request Context

When using logging within a Flask application, you can use this Filter to add some context attributes to all LogRecord.

All Flask Request attributes are supported and they are added as LogRecord with the flask_request_ prefix.

Flask Request Context Filter Constructor

Parameter Type Default Description
attributes list None List of Flask Request attributes name to add to the LogRecord

Flask Request Context Config Example

filters:
  flask:
    (): logging_utilities.filters.flask_attribute.FlaskRequestAttribute
    attributes:
      - url
      - method
      - headers
      - remote_addr
      - json

NOTE: FlaskRequestAttribute only support the special key '()' factory in the configuration file (it doesn't work with the normal 'class' key).

Jsonify Django Request

If you want to log the Django HttpRequest object using the JSON Formatter, this filter is for made for you. It converts the record.request attribute to a valid json object or a string if the attribute is not an HttpRequest instance. It is also useful when using Django with the JSON Formatter because Django adds in some of its logs either an HttpRequest object to the log extra or a socket object.

The HttpRequest attributes that are converted can be configured using the include_keys and/or exclude_keys filter parameters. This can be useful if you want to limit the log data, for example if you don't want to log Authentication headers.

Usage

Add the filter to the log handler and then add simply the HttpRequest to the log extra as follow:

logger.info('My message', extra={'request': request})

Django Request Filter Constructor

Parameter Type Default Description
include_keys list None All request attributes that match any of the dotted keys of the list will be jsonify in the record.request. When None then all attributes are added (default behavior).
exclude_keys list None All request attributes that match any of the dotted keys of the list will not be added to the jsonify of the record.request. NOTE this has precedence to include_keys which means that if a key is in both list, then it is not added.

Django Request Config Example

filters:
  django:
    (): logging_utilities.filters.django_request.JsonDjangoRequest
    include_keys:
      - request.META.REQUEST_METHOD
      - request.META.SERVER_NAME
      - request.environ
    exclude_keys:
      - request.META.SERVER_NAME
      - request.environ.wsgi

NOTE: JsonDjangoRequest only support the special key '()' factory in the configuration file (it doesn't work with the normal 'class' key).

ISO Time with Timezone

The standard logging doesn't support the time as ISO with timezone; YYYY-MM-DDThh:mm:ss.sss±hh:mm. By default asctime uses a ISO like format; YYYY-MM-DD hh:mm:ss.sss, but without T separator (although this one could be configured by overriding a global variable, this can't be done by config file). You can use the datefmt option to specify another date format, however this one don't supports milliseconds, so you could achieve this format: YYYY-MM-DDThh:mm:ss±hh:mm.

This Filter can be used to achieve the full ISO 8601 Time format including timezone and milliseconds.

ISO Time Filter Constructor

Parameter Type Default Description
isotime bool True Add log local time as isotime attribute to LogRecord with the YYYY-MM-DDThh:mm:ss.sss±hh:mm format.
utc_isotime bool False Add log UTC time as utc_isotime attribute to LogRecord with the YYYY-MM-DDThh:mm:ss.sss±hh:mm format.

ISO Time Config Example

filters:
  isotime:
    (): logging_utilities.filters.TimeAttribute
    utc_isotime: True
    isotime: False

NOTE: TimeAttribute only support the special key '()' factory in the configuration file (it doesn't work with the normal 'class' key).

Constant Record Attribute

Simple logging Filter to add constant attribute to every LogRecord

Constant Record Attribute Config Example

filters:
  application:
    (): logging_utilities.filters.ConstAttribute
    application: my-application

NOTE: ConstAttribute only support the special key '()' factory in the configuration file (it doesn't work with the normal 'class' key).

Logger Level Filter

Sometimes you might want to have different log Level based on the logger and handler. The standard logging library allow to set a logger level or a handler level but not based on both. Let say you have a config with two loggers logging to two handlers, on the first handler you want all messages of both loggers and on the second handler you want all messages of the first logger but only the WARNING messages of the second logger. This is here were this filter come into play.

Logger Level Filter Constructor

Parameter Type Default Description
level int | string 'DEBUG' All messages with a lower level than this one will be filtered out.
logger string '' When non empty, only message from this logger will be filtered out based on their level.

Logger Level Filter Config Example

root:
  handlers:
    - "console"
    - "file"
  level: "DEBUG"
  propagate: "True"

filters:
  B_filter:
    (): logging_utilities.filters.LevelFilter
    level: "WARNING"
    logger: 'B'

loggers:
  A:
    level: "DEBUG"
  B:
    level: "DEBUG"

handlers:
  console:
    class: "logging.StreamHandler"

  file:
    class: "logging.handlers.RotatingFileHandler"
    filters:
      - "B_filter"

NOTE: LevelFilter only support the special key '()' factory in the configuration file (it doesn't work with the normal 'class' key).

Basic Usage

Case 1. Simple JSON Output

import logging

from logging_utilities.formatters.json_formatter import basic_config

# default keyword parameter `format`: """{"levelname": "levelname", "name": "name", "message": "message"}"""
basic_config(level=logging.INFO)
logging.info('hello, json_formatter')

output:

{"levelname": "INFO", "name": "root", "message": "hello, json_formatter"}

Case 2. JSON Output Configured within Python Code

import logging

from logging_utilities.formatters.json_formatter import JsonFormatter

# `FORMAT` can be `json`, `OrderedDict` or `dict`.
# If `FORMAT` is `dict` and python version < 3.7.0, the output order is sorted by keys, otherwise it will be the same
# as the defined order.
#
# KEY := string, can be whatever you like.
# VALUE := `LogRecord` attribute name, string, formatted string (e.g. "%(asctime)s.%(msecs)s"), list or dict
FORMAT = {
    "Name":            "name",
    "Levelno":         "levelno",
    "Levelname":       "levelname",
    "Pathname":        "pathname",
    "Filename":        "filename",
    "Module":          "module",
    "Lineno":          "lineno",
    "FuncName":        "funcName",
    "Created":         "created",
    "Asctime":         "asctime",
    "Msecs":           "msecs",
    "RelativeCreated": "relativeCreated",
    "Thread":          "thread",
    "ThreadName":      "threadName",
    "Process":         "process",
    "Message":         "message"
}

root = logging.getLogger()
root.setLevel(logging.INFO)

formatter = JsonFormatter(FORMAT)

sh = logging.StreamHandler()
sh.setFormatter(formatter)
sh.setLevel(logging.INFO)

root.addHandler(sh)

def test():
  root.info("test %s format", 'string')

test()

output:

{"Name": "root", "Levelno": 20, "Levelname": "INFO", "Pathname": "test.py", "Filename": "test.py", "Module": "test", "Lineno": 75, "FuncName": "test", "Created": 1588185267.3198836, "Asctime": "2020-04-30 02:34:27,319", "Msecs": 319.8835849761963, "RelativeCreated": 88.2880687713623, "Thread": 16468, "ThreadName": "MainThread", "Process": 16828, "Message": "test string format"}

Case 3. JSON Output Configured with a YAML File

config.yaml:

version: 1

root:
  handlers:
    - console
  level: DEBUG
  propagate: True

formatters:
  json:
    class: logging_utilities.formatters.json_formatter.JsonFormatter
    format:
      time: asctime
      level: levelname
      logger: name
      module: module
      function: funcName
      process: process
      thread: thread
      message: message

handlers:
  console:
    class: logging.StreamHandler
    formatter: json
    stream: ext://sys.stdout

Then in your python code use it as follow:

import logging
import logging.config

import yaml


config = {}
with open('example-config.yaml', 'r') as fd:
    config = yaml.safe_load(fd.read())

logging.config.dictConfig(config)

root = logging.getLogger()
root.info('Test file config')

output:

{"function": "<module>", "level": "INFO", "logger": "root", "message": "Test file config", "module": "<stdin>", "process": 12264, "thread": 139815989413696, "time": "asctime"}

Case 4. Add Flask Request Context Attributes to JSON Output

config.yaml

version: 1

root:
  handlers:
    - console
  level: DEBUG
  propagate: True

filters:
  isotime:
    (): logging_utilities.filters.TimeAttribute
  flask:
    (): logging_utilities.filters.flask_attribute.FlaskRequestAttribute
    attributes:
      - url
      - method
      - headers
      - remote_addr
      - json

formatters:
  json:
    class: logging_utilities.formatters.json_formatter.JsonFormatter
    format:
      time: isotime
      level: levelname
      logger: name
      module: module
      function: funcName
      process: process
      thread: thread
      request:
        url: flask_request_url
        method: flask_request_method
        headers: flask_request_headers
        data: flask_request_json
        remote: flask_request_remote_addr
      message: message

handlers:
  console:
    class: logging.StreamHandler
    formatter: json
    stream: ext://sys.stdout
    filters:
      - isotime
      - flask

NOTE: This require to have flask package installed otherwise it raises ImportError

Then in your python code use it as follow:

import logging
import logging.config

import yaml


config = {}
with open('example-config.yaml', 'r') as fd:
    config = yaml.safe_load(fd.read())

logging.config.dictConfig(config)

root = logging.getLogger()
root.info('Test file config')

output:

{"function": "<module>", "level": "INFO", "logger": "root", "message": "Test file config", "module": "<stdin>", "process": 24190, "request": {"url": "", "method": "", "headers": "", "data": "", "remote": ""}, "thread": 140163374577472, "time": "isotime"}

Case 5. Add Django Request to JSON Output

config.yaml

version: 1

root:
  handlers:
    - console
  level: DEBUG
  propagate: True

filters:
  isotime:
    (): logging_utilities.filters.TimeAttribute
  django:
    (): logging_utilities.filters.django_request.JsonDjangoRequest
    include_keys:
      - request.path
      - request.method
      - request.headers
    exclude_keys:
      - request.headers.Authorization
      - request.headers.Proxy-Authorization

formatters:
  json:
    class: logging_utilities.formatters.json_formatter.JsonFormatter
    format:
      time: isotime
      level: levelname
      logger: name
      module: module
      function: funcName
      process: process
      thread: thread
      request: request
      response: response
      message: message

handlers:
  console:
    class: logging.StreamHandler
    formatter: json
    stream: ext://sys.stdout
    filters:
      - isotime
      - django

NOTE: This require to have django package installed otherwise it raises ImportError

Then in your python code use it as follow:

import logging
import logging.config

import yaml

from django.http import JsonResponse
from django.conf import settings
from django.test import RequestFactory


config = {}
with open('example-config.yaml', 'r') as fd:
    config = yaml.safe_load(fd.read())

logging.config.dictConfig(config)

logger = logging.getLogger('your_logger')

def my_page(request):
    answer = {'success': True}
    logger.info('My page requested', extra={'request': request, 'response': answer})
    return JsonResponse(answer)

settings.configure()
factory = RequestFactory()

my_page(factory.get('/my_page?test=true'))

output:

{"function": "my_page", "level": "INFO", "logger": "your_logger", "message": "My page requested", "module": "<stdin>", "process": 20421, "request": {"method": "GET", "path": "/my_page", "headers": {"Cookie": ""}}, "response": {"success": true}, "thread": 140433370822464, "time": "2020-10-12T16:44:45.374508+02:00"}

Credits

The JSON Formatter implementation has been inspired by MyColorfulDays/jsonformatter

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

logging-utilities-1.1.0a0.tar.gz (25.9 kB view hashes)

Uploaded Source

Built Distribution

logging_utilities-1.1.0a0-py3-none-any.whl (20.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page