Python logging utilities
Project description
Python logging utilities
This package implements some useful logging utilities. Here below are the main features of the package:
- JSON formatter
- Flask request context record attributes
- Jsonify Django request record attribute
- ISO Time in format
YYYY-MM-DDThh:mm:ss.sss±hh:mm
- Add constant record attributes
- Logger Level Filter
All features can be fully configured from the configuration file.
NOTE: only python 3 is supported
Table of content
- Installation
- Contribution
- JSON Formatter
- Flask Request Context
- Jsonify Django Request
- ISO Time with Timezone
- Constant Record Attribute
- Logger Level Filter
- Basic Usage
- Credits
Installation
logging_utilities is available on PyPI.
Use pip to install:
pip install logging-utilities
Contribution
Every contribution to this library is welcome ! So if you find a bug or want to add a new feature everyone is welcome to open an issue or created a Pull Request.
Developer
You can quickly setup your environment with the makefile:
make setup
This will create a virtual python environment with all packages required for the development.
Note that for pull request, the code MUST BE with yapf
formatted and it also MUST PASS the linter. For this you can use the make targets:
make format
make lint
#or
make format-lint
Any new feature should have its unittest class in order to be tested.
JSON Formatter
JsonFormatter is a python logging formatter that transform the log output into a json object.
JSON log format is quite useful especially when the logs are sent to LogStash.
This formatter supports embedded object as well as array.
Configure JSON Format
The format can be configured either using the format
config parameter or the fmt
constructor parameter. This parameter should be a dictionary (for Python version below 3.7, it is better to use OrderedDict
to keep the attribute order). Each key is taken as such as key for the output JSON object, while each value is transformed as follow in the output:
Value | Type | Transformation | Example |
---|---|---|---|
attribute | string | The string is a LogRecord attribute name, then the value of this attribute is used as output. |
"message" |
str format | string | The string contains named string format, each named format are replaced by the corresponding LogRecord attribute value. |
"%(asctime)s.%(msecs)s" |
object | dict | The object is embedded in the output with its value following the same rules as defined in this table. |
{"lineno": "lineno", "file": "filename"} |
array | list | The list is embedded as an array in the output. Each value is processed using the rules from this table |
["created", "asctime"] |
You can find the LogRecord attributes list in Python Doc
JSON Formatter Options
You can change some behavior using the JsonFormatter
constructor:
Parameter | Type | Default | Description |
---|---|---|---|
fmt |
dict | None |
Define the output format, see Configure JSON Format |
datefmt |
string | None |
Date format for asctime , see time.strftime() |
style |
string | % |
String formatting style, see logging.Formatter |
add_always_extra |
bool | False |
When True , logging extra (logging.log('message', extra={'my-extra': 'some value'}) ) are always added to the output. Otherwise they are only added if present in fmt . |
filter_attributes |
list | None |
When the formatter is used with a Logging.Filter that adds LogRecord attributes, they can be listed here to avoid to be treated as logging extra. |
remove_empty |
bool | False |
When True , empty values (empty list, dict, None or empty string) are removed from output. |
The constructor parameters can be also be specified in the log configuration file using the ()
class specifier instead of class
:
formatters:
json:
(): logging_utilities.formatters.json_formatter.JsonFormatter
add_always_extra: True
fmt:
time: asctime
level: levelname
logger: name
module: module
message: message
Flask Request Context
When using logging within a Flask application, you can use this Filter to add some context attributes to all LogRecord.
All Flask Request attributes are supported and they are added as LogRecord with the flask_request_
prefix.
Flask Request Context Filter Constructor
Parameter | Type | Default | Description |
---|---|---|---|
attributes | list | None | List of Flask Request attributes name to add to the LogRecord |
Flask Request Context Config Example
filters:
flask:
(): logging_utilities.filters.flask_attribute.FlaskRequestAttribute
attributes:
- url
- method
- headers
- remote_addr
- json
NOTE: FlaskRequestAttribute
only support the special key '()'
factory in the configuration file (it doesn't work with the normal 'class'
key).
Jsonify Django Request
If you want to log the Django HttpRequest object using the JSON Formatter, this filter is for made for you. It converts the record.request
attribute to a valid json object or a string if the attribute is not an HttpRequest
instance. It is also useful when using Django with the JSON Formatter because Django adds in some of its logs either an HttpRequest object to the log extra or a socket object.
The HttpRequest
attributes that are converted can be configured using the include_keys
and/or exclude_keys
filter parameters. This can be useful if you want to limit the log data, for example if you don't want to log Authentication headers.
Usage
Add the filter to the log handler and then add simply the HttpRequest
to the log extra as follow:
logger.info('My message', extra={'request': request})
Django Request Filter Constructor
Parameter | Type | Default | Description |
---|---|---|---|
include_keys |
list | None | All request attributes that match any of the dotted keys of the list will be jsonify in the record.request . When None then all attributes are added (default behavior). |
exclude_keys |
list | None | All request attributes that match any of the dotted keys of the list will not be added to the jsonify of the record.request . NOTE this has precedence to include_keys which means that if a key is in both list, then it is not added. |
Django Request Config Example
filters:
django:
(): logging_utilities.filters.django_request.JsonDjangoRequest
include_keys:
- request.META.REQUEST_METHOD
- request.META.SERVER_NAME
- request.environ
exclude_keys:
- request.META.SERVER_NAME
- request.environ.wsgi
NOTE: JsonDjangoRequest
only support the special key '()'
factory in the configuration file (it doesn't work with the normal 'class'
key).
ISO Time with Timezone
The standard logging doesn't support the time as ISO with timezone; YYYY-MM-DDThh:mm:ss.sss±hh:mm
. By default asctime
uses a ISO like format; YYYY-MM-DD hh:mm:ss.sss
, but without T
separator (although this one could be configured by overriding a global variable, this can't be done by config file). You can use the datefmt
option to specify another date format, however this one don't supports milliseconds, so you could achieve this format: YYYY-MM-DDThh:mm:ss±hh:mm
.
This Filter can be used to achieve the full ISO 8601 Time format including timezone and milliseconds.
ISO Time Filter Constructor
Parameter | Type | Default | Description |
---|---|---|---|
isotime |
bool | True | Add log local time as isotime attribute to LogRecord with the YYYY-MM-DDThh:mm:ss.sss±hh:mm format. |
utc_isotime |
bool | False | Add log UTC time as utc_isotime attribute to LogRecord with the YYYY-MM-DDThh:mm:ss.sss±hh:mm format. |
ISO Time Config Example
filters:
isotime:
(): logging_utilities.filters.TimeAttribute
utc_isotime: True
isotime: False
NOTE: TimeAttribute
only support the special key '()'
factory in the configuration file (it doesn't work with the normal 'class'
key).
Constant Record Attribute
Simple logging Filter to add constant attribute to every LogRecord
Constant Record Attribute Config Example
filters:
application:
(): logging_utilities.filters.ConstAttribute
application: my-application
NOTE: ConstAttribute
only support the special key '()'
factory in the configuration file (it doesn't work with the normal 'class'
key).
Logger Level Filter
Sometimes you might want to have different log Level based on the logger and handler. The standard logging library allow to set a logger level or a handler level but not based on both. Let say you have a config with two loggers logging to two handlers, on the first handler you want all messages of both loggers and on the second handler you want all messages of the first logger but only the WARNING messages of the second logger. This is here were this filter come into play.
Logger Level Filter Constructor
Parameter | Type | Default | Description |
---|---|---|---|
level | int | string | 'DEBUG' |
All messages with a lower level than this one will be filtered out. |
logger | string | '' |
When non empty, only message from this logger will be filtered out based on their level. |
Logger Level Filter Config Example
root:
handlers:
- "console"
- "file"
level: "DEBUG"
propagate: "True"
filters:
B_filter:
(): logging_utilities.filters.LevelFilter
level: "WARNING"
logger: 'B'
loggers:
A:
level: "DEBUG"
B:
level: "DEBUG"
handlers:
console:
class: "logging.StreamHandler"
file:
class: "logging.handlers.RotatingFileHandler"
filters:
- "B_filter"
NOTE: LevelFilter
only support the special key '()'
factory in the configuration file (it doesn't work with the normal 'class'
key).
Basic Usage
Case 1. Simple JSON Output
import logging
from logging_utilities.formatters.json_formatter import basic_config
# default keyword parameter `format`: """{"levelname": "levelname", "name": "name", "message": "message"}"""
basic_config(level=logging.INFO)
logging.info('hello, json_formatter')
output:
{"levelname": "INFO", "name": "root", "message": "hello, json_formatter"}
Case 2. JSON Output Configured within Python Code
import logging
from logging_utilities.formatters.json_formatter import JsonFormatter
# `FORMAT` can be `json`, `OrderedDict` or `dict`.
# If `FORMAT` is `dict` and python version < 3.7.0, the output order is sorted by keys, otherwise it will be the same
# as the defined order.
#
# KEY := string, can be whatever you like.
# VALUE := `LogRecord` attribute name, string, formatted string (e.g. "%(asctime)s.%(msecs)s"), list or dict
FORMAT = {
"Name": "name",
"Levelno": "levelno",
"Levelname": "levelname",
"Pathname": "pathname",
"Filename": "filename",
"Module": "module",
"Lineno": "lineno",
"FuncName": "funcName",
"Created": "created",
"Asctime": "asctime",
"Msecs": "msecs",
"RelativeCreated": "relativeCreated",
"Thread": "thread",
"ThreadName": "threadName",
"Process": "process",
"Message": "message"
}
root = logging.getLogger()
root.setLevel(logging.INFO)
formatter = JsonFormatter(FORMAT)
sh = logging.StreamHandler()
sh.setFormatter(formatter)
sh.setLevel(logging.INFO)
root.addHandler(sh)
def test():
root.info("test %s format", 'string')
test()
output:
{"Name": "root", "Levelno": 20, "Levelname": "INFO", "Pathname": "test.py", "Filename": "test.py", "Module": "test", "Lineno": 75, "FuncName": "test", "Created": 1588185267.3198836, "Asctime": "2020-04-30 02:34:27,319", "Msecs": 319.8835849761963, "RelativeCreated": 88.2880687713623, "Thread": 16468, "ThreadName": "MainThread", "Process": 16828, "Message": "test string format"}
Case 3. JSON Output Configured with a YAML File
config.yaml:
version: 1
root:
handlers:
- console
level: DEBUG
propagate: True
formatters:
json:
class: logging_utilities.formatters.json_formatter.JsonFormatter
format:
time: asctime
level: levelname
logger: name
module: module
function: funcName
process: process
thread: thread
message: message
handlers:
console:
class: logging.StreamHandler
formatter: json
stream: ext://sys.stdout
Then in your python code use it as follow:
import logging
import logging.config
import yaml
config = {}
with open('example-config.yaml', 'r') as fd:
config = yaml.safe_load(fd.read())
logging.config.dictConfig(config)
root = logging.getLogger()
root.info('Test file config')
output:
{"function": "<module>", "level": "INFO", "logger": "root", "message": "Test file config", "module": "<stdin>", "process": 12264, "thread": 139815989413696, "time": "asctime"}
Case 4. Add Flask Request Context Attributes to JSON Output
config.yaml
version: 1
root:
handlers:
- console
level: DEBUG
propagate: True
filters:
isotime:
(): logging_utilities.filters.TimeAttribute
flask:
(): logging_utilities.filters.flask_attribute.FlaskRequestAttribute
attributes:
- url
- method
- headers
- remote_addr
- json
formatters:
json:
class: logging_utilities.formatters.json_formatter.JsonFormatter
format:
time: isotime
level: levelname
logger: name
module: module
function: funcName
process: process
thread: thread
request:
url: flask_request_url
method: flask_request_method
headers: flask_request_headers
data: flask_request_json
remote: flask_request_remote_addr
message: message
handlers:
console:
class: logging.StreamHandler
formatter: json
stream: ext://sys.stdout
filters:
- isotime
- flask
NOTE: This require to have flask
package installed otherwise it raises ImportError
Then in your python code use it as follow:
import logging
import logging.config
import yaml
config = {}
with open('example-config.yaml', 'r') as fd:
config = yaml.safe_load(fd.read())
logging.config.dictConfig(config)
root = logging.getLogger()
root.info('Test file config')
output:
{"function": "<module>", "level": "INFO", "logger": "root", "message": "Test file config", "module": "<stdin>", "process": 24190, "request": {"url": "", "method": "", "headers": "", "data": "", "remote": ""}, "thread": 140163374577472, "time": "isotime"}
Case 5. Add Django Request to JSON Output
config.yaml
version: 1
root:
handlers:
- console
level: DEBUG
propagate: True
filters:
isotime:
(): logging_utilities.filters.TimeAttribute
django:
(): logging_utilities.filters.django_request.JsonDjangoRequest
include_keys:
- request.path
- request.method
- request.headers
exclude_keys:
- request.headers.Authorization
- request.headers.Proxy-Authorization
formatters:
json:
class: logging_utilities.formatters.json_formatter.JsonFormatter
format:
time: isotime
level: levelname
logger: name
module: module
function: funcName
process: process
thread: thread
request: request
response: response
message: message
handlers:
console:
class: logging.StreamHandler
formatter: json
stream: ext://sys.stdout
filters:
- isotime
- django
NOTE: This require to have django
package installed otherwise it raises ImportError
Then in your python code use it as follow:
import logging
import logging.config
import yaml
from django.http import JsonResponse
from django.conf import settings
from django.test import RequestFactory
config = {}
with open('example-config.yaml', 'r') as fd:
config = yaml.safe_load(fd.read())
logging.config.dictConfig(config)
logger = logging.getLogger('your_logger')
def my_page(request):
answer = {'success': True}
logger.info('My page requested', extra={'request': request, 'response': answer})
return JsonResponse(answer)
settings.configure()
factory = RequestFactory()
my_page(factory.get('/my_page?test=true'))
output:
{"function": "my_page", "level": "INFO", "logger": "your_logger", "message": "My page requested", "module": "<stdin>", "process": 20421, "request": {"method": "GET", "path": "/my_page", "headers": {"Cookie": ""}}, "response": {"success": true}, "thread": 140433370822464, "time": "2020-10-12T16:44:45.374508+02:00"}
Credits
The JSON Formatter implementation has been inspired by MyColorfulDays/jsonformatter
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for logging-utilities-1.1.0a0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d0d9cb1692e594cd7be6c75f412f94f9e7508507117d87cec1cf39acba1b59d |
|
MD5 | 08ccd82ea97aea09c468076265be1d14 |
|
BLAKE2b-256 | 0327007dd7397a48fdbea624df4471f3084c0faa2a93c230b911c9ab3567fd22 |
Hashes for logging_utilities-1.1.0a0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2b929a027f5b9b66e111aabb54b481b13b166d9d5830c444eda6709cfa724caf |
|
MD5 | b66afd58caf1fe59a1db2eba718b46bb |
|
BLAKE2b-256 | c8134215de245e48bfebdacee262764877428e3ac2764f190b7f09bc90d7ccaa |