Skip to main content

Batch-computing solution for cashflow calculations.

Project description

logical_rush

Batch-computing solution for cashflow calculations.

Developed by Rodolfo Blasser

https://www.linkedin.com/in/rodblasser/

Usage

Prototype batch-computing library for calculating loan amortization tables.

Example

import random
import pandas as pd
import time
import logical_rush


products = ['Auto', 'Personal', 'Commercial', 'Mortgage', 'MicroCredit']
terms = [5, 10, 15, 20, 25, 30]
#terms = [5, 10, 15]
rates = [0.04, 0.05, 0.06, 0.07, 0.08]
amounts = [10000, 20000, 30000, 50000, 60000] 
freqs = [1,2,3,6]

# =============================================================================
# Testing performance
# =============================================================================
res = []
for each_i in range(*{'start':100,'stop':500,'step':5}.values()):

    dx = pd.DataFrame(index=range(each_i), columns=['id','amt','rate','pers','int_freq','cap_freq'],)
    print("\ndx created with {} rows".format(dx.shape[0]))
    
    dx['id'] = (dx.index + 1000)
    dx['amt'] = dx['amt'].apply(lambda x:random.choice(amounts))
    dx['rate'] = dx['rate'].apply(lambda x:random.choice(rates)) / 12
    dx['pers'] = dx['pers'].apply(lambda x:random.choice(terms)) * 12 #* 30 # daily flows
    dx['int_freq'] = dx['int_freq'].apply(lambda x:random.choice(freqs))
    dx['cap_freq'] = dx['cap_freq'].apply(lambda x:random.choice(freqs))
    dx['id'] = dx['id'].astype(str)
    dx['amt'] = dx['amt'].astype(float)
    dx['rate'] = dx['rate'].astype(float)
    
    dx_dict = dx.to_dict(orient="records")
    
    
    dxs = dx.copy()
    for c in dxs.columns:
        dxs[c] = dxs[c].astype(str)
        
    dxs_dict = dxs.to_dict(orient="records")
    
    # Sequential
    tic = time.time()
    i = logical_rush.cashflower_fn(dx_dict)
    tac = time.time()
    tictac_seq = tac - tic
    print("SEQ: {}".format(tictac_seq))
    
    flows_len = len(i)
    del i
    
    # Parallel
    tic = time.time()
    ipar = logical_rush.cashflower_par(dxs_dict)
    tac = time.time()
    tictac_par = tac - tic
    print("PAR: {}".format(tictac_par))
    
    del ipar
    
    # GIL Release
    tic = time.time()
    igil = logical_rush.cashflower_gil(dxs_dict)
    tac = time.time()
    tictac_gil = tac - tic
    print("GIL: {}".format(tictac_gil))
    
    del igil
    
    res.append([each_i, flows_len, tictac_seq,  tictac_par, tictac_gil])
    print("\t{} SEQ loans @ {} seconds | output: {} flows".format(each_i,round(tictac_seq,4),flows_len))
    print("\t{} PAR loans @ {} seconds | output: {} flows".format(each_i,round(tictac_par,4),flows_len))
    print("\t{} GIL loans @ {} seconds | output: {} flows".format(each_i,round(tictac_gil,4),flows_len))

# Export comparison
pd.DataFrame(res).to_csv("benchmarking_results_seq_par_gil_flows.csv")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

logical_rush-0.0.3-py3-none-any.whl (1.3 MB view details)

Uploaded Python 3

File details

Details for the file logical_rush-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for logical_rush-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 bd58f98a7b6048e8b55a50ad725bb28e2ce6d9232481f6cc412ca0c8628b34af
MD5 20f147c2bc874d9572d0c9b29da5b131
BLAKE2b-256 26d43482de9021469f8c6a4ff9f0aef4a4c342479a446d9573798d01f5ebf429

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page