Skip to main content

Batch-computing solution for cashflow calculations.

Project description

logical_rush

Batch-computing solution for cashflow calculations.

Developed by Rodolfo Blasser

https://www.linkedin.com/in/rodblasser/

Usage

Prototype batch-computing library for calculating loan amortization tables.

Example

import random
import pandas as pd
import time
import logical_rush


products = ['Auto', 'Personal', 'Commercial', 'Mortgage', 'MicroCredit']
terms = [5, 10, 15, 20, 25, 30]
#terms = [5, 10, 15]
rates = [0.04, 0.05, 0.06, 0.07, 0.08]
amounts = [10000, 20000, 30000, 50000, 60000] 
freqs = [1,2,3,6]

# =============================================================================
# Testing performance
# =============================================================================
res = []
for each_i in range(*{'start':100,'stop':500,'step':5}.values()):

    dx = pd.DataFrame(index=range(each_i), columns=['id','amt','rate','pers','int_freq','cap_freq'],)
    print("\ndx created with {} rows".format(dx.shape[0]))
    
    dx['id'] = (dx.index + 1000)
    dx['amt'] = dx['amt'].apply(lambda x:random.choice(amounts))
    dx['rate'] = dx['rate'].apply(lambda x:random.choice(rates)) / 12
    dx['pers'] = dx['pers'].apply(lambda x:random.choice(terms)) * 12 #* 30 # daily flows
    dx['int_freq'] = dx['int_freq'].apply(lambda x:random.choice(freqs))
    dx['cap_freq'] = dx['cap_freq'].apply(lambda x:random.choice(freqs))
    dx['id'] = dx['id'].astype(str)
    dx['amt'] = dx['amt'].astype(float)
    dx['rate'] = dx['rate'].astype(float)
    
    dx_dict = dx.to_dict(orient="records")
    
    
    dxs = dx.copy()
    for c in dxs.columns:
        dxs[c] = dxs[c].astype(str)
        
    dxs_dict = dxs.to_dict(orient="records")
    
    # Sequential
    tic = time.time()
    i = logical_rush.cashflower_fn(dx_dict)
    tac = time.time()
    tictac_seq = tac - tic
    print("SEQ: {}".format(tictac_seq))
    
    flows_len = len(i)
    del i
    
    # Parallel
    tic = time.time()
    ipar = logical_rush.cashflower_par(dxs_dict)
    tac = time.time()
    tictac_par = tac - tic
    print("PAR: {}".format(tictac_par))
    
    del ipar
    
    # GIL Release
    tic = time.time()
    igil = logical_rush.cashflower_gil(dxs_dict)
    tac = time.time()
    tictac_gil = tac - tic
    print("GIL: {}".format(tictac_gil))
    
    del igil
    
    res.append([each_i, flows_len, tictac_seq,  tictac_par, tictac_gil])
    print("\t{} SEQ loans @ {} seconds | output: {} flows".format(each_i,round(tictac_seq,4),flows_len))
    print("\t{} PAR loans @ {} seconds | output: {} flows".format(each_i,round(tictac_par,4),flows_len))
    print("\t{} GIL loans @ {} seconds | output: {} flows".format(each_i,round(tictac_gil,4),flows_len))

# Export comparison
pd.DataFrame(res).to_csv("benchmarking_results_seq_par_gil_flows.csv")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

logical_rush-0.0.4-cp310-cp310-win_amd64.whl (199.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

File details

Details for the file logical_rush-0.0.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for logical_rush-0.0.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b67cd2b5c3795dfc6591158ced4e081e7e8ba8645ad1602f1c014f8d092a035d
MD5 1080abdafe16078bf2e2d0b4a4145d9d
BLAKE2b-256 87c756530cebe6b5a760e433d56a851f3fc349d8c70027c0403b49b917b4c58d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page