Skip to main content

Batch-computing solution for cashflow calculations.

Project description

logical_rush

Batch-computing solution for cashflow calculations.

Developed by Rodolfo Blasser

https://www.linkedin.com/in/rodblasser/

Usage

Prototype batch-computing library for calculating loan amortization tables.

Example

import random
import pandas as pd
import time
import logical_rush


products = ['Auto', 'Personal', 'Commercial', 'Mortgage', 'MicroCredit']
terms = [5, 10, 15, 20, 25, 30]
#terms = [5, 10, 15]
rates = [0.04, 0.05, 0.06, 0.07, 0.08]
amounts = [10000, 20000, 30000, 50000, 60000] 
freqs = [1,2,3,6]

# =============================================================================
# Testing performance
# =============================================================================
res = []
for each_i in range(*{'start':100,'stop':500,'step':5}.values()):

    dx = pd.DataFrame(index=range(each_i), columns=['id','amt','rate','pers','int_freq','cap_freq'],)
    print("\ndx created with {} rows".format(dx.shape[0]))
    
    dx['id'] = (dx.index + 1000)
    dx['amt'] = dx['amt'].apply(lambda x:random.choice(amounts))
    dx['rate'] = dx['rate'].apply(lambda x:random.choice(rates)) / 12
    dx['pers'] = dx['pers'].apply(lambda x:random.choice(terms)) * 12 #* 30 # daily flows
    dx['int_freq'] = dx['int_freq'].apply(lambda x:random.choice(freqs))
    dx['cap_freq'] = dx['cap_freq'].apply(lambda x:random.choice(freqs))
    dx['id'] = dx['id'].astype(str)
    dx['amt'] = dx['amt'].astype(float)
    dx['rate'] = dx['rate'].astype(float)
    
    dx_dict = dx.to_dict(orient="records")
    
    
    dxs = dx.copy()
    for c in dxs.columns:
        dxs[c] = dxs[c].astype(str)
        
    dxs_dict = dxs.to_dict(orient="records")
    
    # Sequential
    tic = time.time()
    i = logical_rush.cashflower_fn(dx_dict)
    tac = time.time()
    tictac_seq = tac - tic
    print("SEQ: {}".format(tictac_seq))
    
    flows_len = len(i)
    del i
    
    # Parallel
    tic = time.time()
    ipar = logical_rush.cashflower_par(dxs_dict)
    tac = time.time()
    tictac_par = tac - tic
    print("PAR: {}".format(tictac_par))
    
    del ipar
    
    # GIL Release
    tic = time.time()
    igil = logical_rush.cashflower_gil(dxs_dict)
    tac = time.time()
    tictac_gil = tac - tic
    print("GIL: {}".format(tictac_gil))
    
    del igil
    
    res.append([each_i, flows_len, tictac_seq,  tictac_par, tictac_gil])
    print("\t{} SEQ loans @ {} seconds | output: {} flows".format(each_i,round(tictac_seq,4),flows_len))
    print("\t{} PAR loans @ {} seconds | output: {} flows".format(each_i,round(tictac_par,4),flows_len))
    print("\t{} GIL loans @ {} seconds | output: {} flows".format(each_i,round(tictac_gil,4),flows_len))

# Export comparison
pd.DataFrame(res).to_csv("benchmarking_results_seq_par_gil_flows.csv")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

logical_rush-0.0.5-cp310-cp310-win_amd64.whl (202.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

File details

Details for the file logical_rush-0.0.5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for logical_rush-0.0.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 accf7636e99121eb6ebd033313e3b2983848c5ab45cd1311e0552688aec5c869
MD5 6099c9541dd873dbf3a2279c48716c01
BLAKE2b-256 da8b273b720951cbb946193fa5899399e0a97557262ce2d6c76dad41659aad85

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page