Skip to main content

An integration package created by the company LOGYCA to interact with ChatGPT and analyze documents, files and other functionality of the OpenAI library.

Project description

Logyca

LOGYCA public libraries

Package version Python


About us


LOGYCA public libraries: To interact with ChatGPT and analyze documents, files and other functionality of the OpenAI library.

Source code | Package (PyPI) | Samples

To interact with the examples, keep the following in mind

FastAPI example. Through Swagger, you can:

Script example. Through of code, you can:


OCR engine to extract images.

  • Tesseract is an optical character recognition engine for various operating systems. It is free software, released under the Apache License. Originally developed by Hewlett-Packard as proprietary software in the 1980s, it was released as open source in 2005 and development was sponsored by Google in 2006

Install

Example for simple conversation.

{
  "system": "Voy a definirte tu personalidad, contexto y proposito.\nActua como un experto en venta de frutas.\nSe muy positivo.\nTrata a las personas de usted, nunca tutees sin importar como te escriban.",
  "messages": [
    {
      "additional_content": "",
      "type": "text",
      "user": "Dime 5 frutas amarillas"
    },
    {
      "assistant": "\n¡Claro! Aquí te van 5 frutas amarillas:\n\n1. Plátano\n2. Piña\n3. Mango\n4. Melón\n5. Papaya\n"
    },
    {
      "additional_content": "",
      "type": "text",
      "user": "Dame los nombres en ingles."
    }
  ]
}

Example for image conversation.

Using public published URL for image

{
  "system": "Actua como una maquina lectora de imagenes.\nDevuelve la información sin lenguaje natural, sólo responde lo que se está solicitando.\nEl dispositivo que va a interactuar contigo es una api, y necesita la información sin markdown u otros caracteres especiales.",
  "messages": [
    {
      "additional_content": {
        "base64_content_or_url": "https://raw.githubusercontent.com/logyca/python-libraries/3d91b5a93fb1219804753ce233fabd5f635662d3/logyca-ai/logyca_ai/assets_for_examples/file_or_documents/image.png",
        "image_format": "image_url",
        "image_resolution": "auto"
      },
      "type": "image_url",
      "user": "Extrae el texto que recibas en la imagen y devuelvelo en formato json."
    }
  ]
}

Using image content in base64

{
  "system": "Actua como una maquina lectora de imagenes.\nDevuelve la información sin lenguaje natural, sólo responde lo que se está solicitando.\nEl dispositivo que va a interactuar contigo es una api, y necesita la información sin markdown u otros caracteres especiales.",
  "messages": [
    {
      "additional_content": {
        "base64_content_or_url": "<base64 image png content>",
        "image_format": "png",
        "image_resolution": "auto"
      },
      "type": "image_base64",
      "user": "Extrae el texto que recibas en la imagen y devuelvelo en formato json."
    }
  ]
}

Example for pdf conversation.

Using public published URL for pdf

{
  "system": "No uses lenguaje natural para la respuesta.\nDame la información que puedas extraer de la imagen en formato JSON.\nSolo devuelve la información, no formatees con caracteres adicionales la respuesta.",
  "messages": [
    {
      "additional_content": {
        "base64_content_or_url": "https://raw.githubusercontent.com/logyca/python-libraries/3d91b5a93fb1219804753ce233fabd5f635662d3/logyca-ai/logyca_ai/assets_for_examples/file_or_documents/pdf.pdf",
        "pdf_format": "pdf_url"
      },
      "type": "pdf_url",
      "user": "Dame los siguientes datos: Expediente, radicación, Fecha, Numero de registro, Vigencia."
    }
  ]
}

Using pdf content in base64

{
  "system": "No uses lenguaje natural para la respuesta.\nDame la información que puedas extraer de la imagen en formato JSON.\nSolo devuelve la información, no formatees con caracteres adicionales la respuesta.",
  "messages": [
    {
      "additional_content": {
        "base64_content_or_url": "<base64 pdf content>",
        "pdf_format": "pdf"
      },
      "type": "pdf_base64",
      "user": "Dame los siguientes datos: Expediente, radicación, Fecha, Numero de registro, Vigencia."
    }
  ]
}

Semantic Versioning

logyca_ai < MAJOR >.< MINOR >.< PATCH >

  • MAJOR: version when you make incompatible API changes
  • MINOR: version when you add functionality in a backwards compatible manner
  • PATCH: version when you make backwards compatible bug fixes

Definitions for releasing versions

  • https://peps.python.org/pep-0440/

    • X.YaN (Alpha release): Identify and fix early-stage bugs. Not suitable for production use.
    • X.YbN (Beta release): Stabilize and refine features. Address reported bugs. Prepare for official release.
    • X.YrcN (Release candidate): Final version before official release. Assumes all major features are complete and stable. Recommended for testing in non-critical environments.
    • X.Y (Final release/Stable/Production): Completed, stable version ready for use in production. Full release for public use.

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

Types of changes

  • Added for new features.
  • Changed for changes in existing functionality.
  • Deprecated for soon-to-be removed features.
  • Removed for now removed features.
  • Fixed for any bug fixes.
  • Security in case of vulnerabilities.

[0.0.1aX] - 2024-08-02

Added

  • First tests using pypi.org in develop environment.

[0.1.0] - 2024-08-02

Added

  • Completion of testing and launch into production.

[0.1.1] - 2024-08-16

Added

  • The functions of extracting text from PDF files are refactored, using disk to optimize the use of ram memory and methods are added to extract text from images within the pages of the PDF files.

[0.1.2] - 2024-08-26

Added

  • New feature of attaching documents with txt, csv, docx, xlsx extension

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

logyca_ai-0.2.0a1.tar.gz (624.6 kB view details)

Uploaded Source

Built Distribution

logyca_ai-0.2.0a1-py3-none-any.whl (624.5 kB view details)

Uploaded Python 3

File details

Details for the file logyca_ai-0.2.0a1.tar.gz.

File metadata

  • Download URL: logyca_ai-0.2.0a1.tar.gz
  • Upload date:
  • Size: 624.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for logyca_ai-0.2.0a1.tar.gz
Algorithm Hash digest
SHA256 54089634988e5fa528e527dbf38ce200ada5655fd74c6ae8783a72d6ace64fa6
MD5 623def65e5a562cf0c19ca9dd6c0cc5b
BLAKE2b-256 6f27bfcf231610c5a0105326a0cfc310cb6c72ef209eaa2b72934fe3546e7fe6

See more details on using hashes here.

File details

Details for the file logyca_ai-0.2.0a1-py3-none-any.whl.

File metadata

  • Download URL: logyca_ai-0.2.0a1-py3-none-any.whl
  • Upload date:
  • Size: 624.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for logyca_ai-0.2.0a1-py3-none-any.whl
Algorithm Hash digest
SHA256 334492eeebe92a7df28ffc80984163694d92ed05630893274746a226e777453b
MD5 7ecc76df606a049e89d2cae313c4a8a3
BLAKE2b-256 dbb64246f01cfc2a7e934781c4ed55376a82435a709b83f4b501c336bfd57a39

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page