Skip to main content

Using optuna search optimizer to estimate best tree based estimator compatible with scikit-learn

Project description

lohrasb

lohrasb is a package built to ease machine learning development. It uses Optuna, GridSearchCV, and RandomizedSearchCV to tune most of the tree-based estimators of sickit-learn. It is compatible with scikit-learn pipeline.

Introduction

BaseModel of the Lohrasb package can receive various parameters. From an estimator class to its tunning parameters and GridsearchCV, RandomizedSearchCV, or Optuna to their parameters. Samples will be split to train and validation set, and then optimization will estimate optimal related parameters using these optimizing engines.

Installation

lohrasb package is available on PyPI and can be installed with pip:

pip install lohrasb

Supported estimators for this package

Almost all machine learning estimators for classification and regression supported by Lohrasb.

Usage

Factories

For ease of use of BestModel, some factories are available to build associated instances corresponding to each optimization engine. For example, the following factory can be used for GridSearchCV:

obj = BaseModel.bestmodel_factory.using_gridsearch(
            estimator=XGBClassifier(),
            estimator_params = {
                "eval_metric": ["auc"],
                "max_depth": [4, 5],
            },
            measure_of_accuracy="f1_score",
            verbose=3,
            n_jobs=-1,
            random_state=42,
            cv=KFold(2),
        )

One example : Computer Hardware

Import some required libraries

from lohrasb.best_estimator import BaseModel
import xgboost
from optuna.pruners import HyperbandPruner
from optuna.samplers._tpe.sampler import TPESampler
from sklearn.model_selection import KFold,train_test_split
import pandas as pd
import numpy as np
import optuna
from sklearn.pipeline import Pipeline
from feature_engine.imputation import (
    CategoricalImputer,
    MeanMedianImputer
    )
from category_encoders import OrdinalEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (
    classification_report,
    confusion_matrix,
    f1_score)
from sklearn.metrics import f1_score, mean_absolute_error,r2_score
from sklearn.linear_model import *
from sklearn.svm import *
from xgboost import *
from sklearn.linear_model import *
from catboost import *
from lightgbm import *
from sklearn.neural_network import *
from imblearn.ensemble import *
from sklearn.ensemble import *

Computer Hardware Data Set (a regression problem)

https://archive.ics.uci.edu/ml/datasets/Computer+Hardware

urldata= "https://archive.ics.uci.edu/ml/machine-learning-databases/cpu-performance/machine.data"
# column names
col_names=[
    "vendor name",
    "Model Name",
    "MYCT",
    "MMIN",
    "MMAX",
    "CACH",
    "CHMIN",
    "CHMAX",
    "PRP"
]
# read data
data = pd.read_csv(urldata,header=None,names=col_names,sep=',')
data

Train test split

X = data.loc[:, data.columns != "PRP"]
y = data.loc[:, data.columns == "PRP"]
y = y.values.ravel()


X_train, X_test, y_train, y_test =train_test_split(X, y, test_size=0.33, random_state=42)

Find feature types for later use

int_cols =  X_train.select_dtypes(include=['int']).columns.tolist()
float_cols =  X_train.select_dtypes(include=['float']).columns.tolist()
cat_cols =  X_train.select_dtypes(include=['object']).columns.tolist()

Define estimator and set its arguments

estimator = LinearRegression()
estimator_params= {
        "fit_intercept": [True, False],
    }

Use factory

obj = BaseModel.bestmodel_factory.using_optuna(
            estimator=estimator,
            estimator_params=estimator_params,
            measure_of_accuracy="r2_score",
            verbose=3,
            n_jobs=-1,
            random_state=42,
            # optuna params
            # optuna study init params
            study=optuna.create_study(
                storage=None,
                sampler=TPESampler(),
                pruner=HyperbandPruner(),
                study_name=None,
                direction="maximize",
                load_if_exists=False,
                directions=None,
            ),
            # optuna optimization params
            study_optimize_objective=None,
            study_optimize_objective_n_trials=10,
            study_optimize_objective_timeout=600,
            study_optimize_n_jobs=-1,
            study_optimize_catch=(),
            study_optimize_callbacks=None,
            study_optimize_gc_after_trial=False,
            study_optimize_show_progress_bar=False,
        )

Build sklearn pipeline

pipeline =Pipeline([
            # int missing values imputers
            ('intimputer', MeanMedianImputer(
                imputation_method='median', variables=int_cols)),
            # category missing values imputers
            ('catimputer', CategoricalImputer(variables=cat_cols)),
            #
            ('catencoder', OrdinalEncoder()),
            # regression model 
            ('obj', obj),


 ])

Run Pipeline

pipeline.fit(X_train,y_train)
y_pred = pipeline.predict(X_test)

Check performance of the pipeline

print('r2 score : ')
print(r2_score(y_test,y_pred))

There are some examples available in the examples.

License

Licensed under the BSD 2-Clause License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lohrasb-1.5.0.tar.gz (27.0 kB view hashes)

Uploaded Source

Built Distribution

lohrasb-1.5.0-py3-none-any.whl (34.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page