Produciton Ready LangChain
Project description
LongTrainer - Production-Ready LangChain
Features 🌟
- ✅ Long Memory: Retains context effectively for extended interactions.
- ✅ Unique Bots/Chat Management: Sophisticated management of multiple chatbots.
- ✅ Enhanced Customization: Tailor the behavior to fit specific needs.
- ✅ Memory Management: Efficient handling of chat histories and contexts.
- ✅ GPT Vision Support: Integration Context Aware GPT-powered visual models.
- ✅ Different Data Formats: Supports various data input formats.
- ✅ VectorStore Management: Advanced management of vector storage for efficient retrieval.
Works for All Langchain Supported LLM and Embeddings
- ✅ OpenAI (default)
- ✅ VertexAI
- ✅ HuggingFace
Example
VertexAI LLMs
from longtrainer.trainer import LongTrainer
from langchain_community.llms import VertexAI
llm = VertexAI()
trainer = LongTrainer(mongo_endpoint='mongodb://localhost:27017/', llm=llm)
TogetherAI LLMs
from longtrainer.trainer import LongTrainer
from langchain_community.llms import Together
llm = Together(
model="togethercomputer/RedPajama-INCITE-7B-Base",
temperature=0.7,
max_tokens=128,
top_k=1,
# together_api_key="..."
)
trainer = LongTrainer(mongo_endpoint='mongodb://localhost:27017/', llm=llm)
Usage Example 🚀
pip install longtrainer
Here's a quick start guide on how to use LongTrainer:
from longtrainer.trainer import LongTrainer
import os
# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "sk-"
# Initialize LongTrainer
trainer = LongTrainer(mongo_endpoint='mongodb://localhost:27017/')
bot_id = trainer.initialize_bot_id()
print('Bot ID: ', bot_id)
# Add Data
path = 'path/to/your/data'
trainer.add_document_from_path(path, bot_id)
# Initialize Bot
trainer.create_bot(bot_id)
# Start a New Chat
chat_id = trainer.new_chat(bot_id)
# Send a Query and Get a Response
query = 'Your query here'
response = trainer._get_response(query, bot_id, chat_id)
print('Response: ', response)
Here's a guide on how to use Vision Chat:
chat_id = trainer.new_vision_chat(bot_id)
query = 'Your query here'
image_paths=['/home/muzammil/PycharmProjects/nvidia.jpg']
response = trainer._get_vision_response(query, image_paths, str(bot_id),str(vision_id))
print('Response: ', response)
This project is still under active development. Community feedback and contributions are highly appreciated.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
longtrainer-0.1.7.tar.gz
(11.7 kB
view details)
Built Distribution
File details
Details for the file longtrainer-0.1.7.tar.gz
.
File metadata
- Download URL: longtrainer-0.1.7.tar.gz
- Upload date:
- Size: 11.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a1adfa2f71fb2ede2eb6c53bcbeef988ef55224a595a47066d1895ad462c5882 |
|
MD5 | 365d157c79bcf1f850cf74f876553a4c |
|
BLAKE2b-256 | 972ce033db8e1a8610d6e074a33eec4a7280985f54f99b86534f454e18a27c2c |
File details
Details for the file longtrainer-0.1.7-py3-none-any.whl
.
File metadata
- Download URL: longtrainer-0.1.7-py3-none-any.whl
- Upload date:
- Size: 12.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 759c650de46a521492e72d7f25e5e202569559ceed6a262ee392a265399a36be |
|
MD5 | c221693e6ef58cd1f97f2515f44b5913 |
|
BLAKE2b-256 | 158757bb58e17de3d951cb540c229bcb3c5c48d65565139fa0f2dd94f55cde87 |