Skip to main content

Produciton Ready LangChain

Project description

LongTrainer Logo

LongTrainer - Production-Ready LangChain

PyPI Version Total Downloads Monthly Downloads Open in Colab


Features 🌟

  • Long Memory: Retains context effectively for extended interactions.
  • Unique Bots/Chat Management: Sophisticated management of multiple chatbots.
  • Enhanced Customization: Tailor the behavior to fit specific needs.
  • Memory Management: Efficient handling of chat histories and contexts.
  • GPT Vision Support: Integration Context Aware GPT-powered visual models.
  • Different Data Formats: Supports various data input formats.
  • VectorStore Management: Advanced management of vector storage for efficient retrieval.

Works for All Langchain Supported LLM and Embeddings

  • ✅ OpenAI (default)
  • ✅ VertexAI
  • ✅ HuggingFace

Example

VertexAI LLMs

from longtrainer.trainer import LongTrainer
from langchain_community.llms import VertexAI

llm = VertexAI()

trainer = LongTrainer(mongo_endpoint='mongodb://localhost:27017/', llm=llm)

TogetherAI LLMs

from longtrainer.trainer import LongTrainer
from langchain_community.llms import Together

llm = Together(
    model="togethercomputer/RedPajama-INCITE-7B-Base",
    temperature=0.7,
    max_tokens=128,
    top_k=1,
    # together_api_key="..."
)

trainer = LongTrainer(mongo_endpoint='mongodb://localhost:27017/', llm=llm)

Usage Example 🚀

pip install longtrainer

Here's a quick start guide on how to use LongTrainer:

from longtrainer.trainer import LongTrainer
import os
        
# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "sk-"
        
# Initialize LongTrainer
trainer = LongTrainer(mongo_endpoint='mongodb://localhost:27017/', encrypt_chats=True)
bot_id = trainer.initialize_bot_id()
print('Bot ID: ', bot_id)
        
# Add Data
path = 'path/to/your/data'
trainer.add_document_from_path(path, bot_id)
        
# Initialize Bot
trainer.create_bot(bot_id)
        
# Start a New Chat
chat_id = trainer.new_chat(bot_id)
        
# Send a Query and Get a Response
query = 'Your query here'
response = trainer._get_response(query, bot_id, chat_id)
print('Response: ', response)

Here's a guide on how to use Vision Chat:

chat_id = trainer.new_vision_chat(bot_id)

query = 'Your query here'
image_paths=['nvidia.jpg']
response = trainer._get_vision_response(query, image_paths, str(bot_id),str(vision_id))
print('Response: ', response)

List Chats and Display Chat History:

trainer.list_chats(bot_id)

trainer.get_chat_by_id(chat_id=chat_id)

This project is still under active development. Community feedback and contributions are highly appreciated.

Citation

If you utilize this repository, please consider citing it with:

@misc{longtrainer,
  author = {Endevsols},
  title = {LongTrainer: Production-Ready LangChain},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/ENDEVSOLS/Long-Trainer}},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

longtrainer-0.2.1.tar.gz (19.1 kB view details)

Uploaded Source

Built Distribution

longtrainer-0.2.1-py3-none-any.whl (19.5 kB view details)

Uploaded Python 3

File details

Details for the file longtrainer-0.2.1.tar.gz.

File metadata

  • Download URL: longtrainer-0.2.1.tar.gz
  • Upload date:
  • Size: 19.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for longtrainer-0.2.1.tar.gz
Algorithm Hash digest
SHA256 97c9dfd296e19bf4d8272ff79fead07acc258e6d3a19afaa863741c1029429cd
MD5 143e64617cdfb249d0ad0273fa1ef3d1
BLAKE2b-256 e4f5cf0a0751340cba7c2a5dea0fe15c378b090d66c3f9f26ea7732cd8e20817

See more details on using hashes here.

File details

Details for the file longtrainer-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: longtrainer-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 19.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for longtrainer-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 fb285d2be95ccfcd410d5b8ccbd3fe34435bd4b81eddeea92869693ab4f4f6e2
MD5 f0447fd804c30d2946c3d7917124c617
BLAKE2b-256 e3a7df4ad97e34944f8c2b47449f5dbf7da31188c8545a30c95cb38d88e1ab0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page