Skip to main content

Production Ready LangChain

Project description

LongTrainer Logo

LongTrainer - Production-Ready LangChain

PyPI Version Total Downloads Monthly Downloads Open in Colab


Visit Blog Post

Features 🌟

  • Long Memory: Retains context effectively for extended interactions.
  • Unique Bots/Chat Management: Sophisticated management of multiple chatbots.
  • Enhanced Customization: Tailor the behavior to fit specific needs.
  • Memory Management: Efficient handling of chat histories and contexts.
  • GPT Vision Support: Integration Context Aware GPT-powered visual models.
  • Different Data Formats: Supports various data input formats.
  • VectorStore Management: Advanced management of vector storage for efficient retrieval.

Works for All Langchain Supported LLM and Embeddings

  • ✅ OpenAI (default)
  • ✅ VertexAI
  • ✅ HuggingFace

Example

VertexAI LLMs

from longtrainer.trainer import LongTrainer
from langchain_community.llms import VertexAI

llm = VertexAI()

trainer = LongTrainer(mongo_endpoint='mongodb://localhost:27017/', llm=llm)

TogetherAI LLMs

from longtrainer.trainer import LongTrainer
from langchain_community.llms import Together

llm = Together(
    model="togethercomputer/RedPajama-INCITE-7B-Base",
    temperature=0.7,
    max_tokens=128,
    top_k=1,
    # together_api_key="..."
)

trainer = LongTrainer(mongo_endpoint='mongodb://localhost:27017/', llm=llm)

Usage Example 🚀

pip install longtrainer

Here's a quick start guide on how to use LongTrainer:

from longtrainer.trainer import LongTrainer
import os
        
# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "sk-"
        
# Initialize LongTrainer
trainer = LongTrainer(mongo_endpoint='mongodb://localhost:27017/', encrypt_chats=True)
bot_id = trainer.initialize_bot_id()
print('Bot ID: ', bot_id)
        
# Add Data
path = 'path/to/your/data'
trainer.add_document_from_path(path, bot_id)
        
# Initialize Bot
trainer.create_bot(bot_id)
        
# Start a New Chat
chat_id = trainer.new_chat(bot_id)
        
# Send a Query and Get a Response
query = 'Your query here'
response = trainer.get_response(query, bot_id, chat_id)
print('Response: ', response)

Here's a guide on how to use Vision Chat:

chat_id = trainer.new_vision_chat(bot_id)

query = 'Your query here'
image_paths=['nvidia.jpg']
response = trainer.get_vision_response(query, image_paths, str(bot_id),str(vision_id))
print('Response: ', response)

List Chats and Display Chat History:

trainer.list_chats(bot_id)

trainer.get_chat_by_id(chat_id=chat_id)

This project is still under active development. Community feedback and contributions are highly appreciated.

Citation

If you utilize this repository, please consider citing it with:

@misc{longtrainer,
  author = {Endevsols},
  title = {LongTrainer: Production-Ready LangChain},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/ENDEVSOLS/Long-Trainer}},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

longtrainer-0.2.4.tar.gz (19.9 kB view details)

Uploaded Source

Built Distribution

longtrainer-0.2.4-py3-none-any.whl (20.1 kB view details)

Uploaded Python 3

File details

Details for the file longtrainer-0.2.4.tar.gz.

File metadata

  • Download URL: longtrainer-0.2.4.tar.gz
  • Upload date:
  • Size: 19.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for longtrainer-0.2.4.tar.gz
Algorithm Hash digest
SHA256 d683c9c8495307bd28c12269bed44325a0e60bf7f0392af91d3cc01b3ebdee9c
MD5 36b6b27c5a81bbc22ab2a161fe50eaa4
BLAKE2b-256 b851f62627c760f690cd1b99010e96e45afe5301b45bb1f3a100b4c0c69911c9

See more details on using hashes here.

File details

Details for the file longtrainer-0.2.4-py3-none-any.whl.

File metadata

  • Download URL: longtrainer-0.2.4-py3-none-any.whl
  • Upload date:
  • Size: 20.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for longtrainer-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 61dd82928463866dcded62e7b0e00afc5efafb711c688f68a30c58c90605a365
MD5 1d40d80fa392338ebade16f906a9163a
BLAKE2b-256 bd46fecf6cf91b5117c530ff13708a38c026707aaef0b7854911a7a140470ae2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page