Skip to main content

Prepare data to run the LOONE model.

Project description

LOONE_DATA_PREP

LOONE_DATA_PREP

Prepare data for the LOONE water quality model.

Link to LOONE model repository: https://github.com/osamatarabih/LOONE

Prerequisites:

Installation:

cd /path/to/loone_data_prep/
pip install .

Examples

From the command line:

# Get flow data
python -m loone_data_prep.flow_data.get_inflows /path/to/workspace/
python -m loone_data_prep.flow_data.get_outflows /path/to/workspace/
python -m loone_data_prep.flow_data.S65E_total /path/to/workspace/

# Get water quality data
python -m loone_data_prep.water_quality_data.get_inflows /path/to/workspace/
python -m loone_data_prep.water_quality_data.get_lake_wq /path/to/workspace/

# Get weather data
python -m loone_data_prep.weather_data.get_all /path/to/workspace/

# Get water level
python -m loone_data_prep.water_level_data.get_all /path/to/workspace/

# Interpolate data
python -m loone_data_prep.utils interp_all /path/to/workspace/

# Prepare data for LOONE
python -m loone_data_prep.LOONE_DATA_PREP /path/to/workspace/ /path/to/output/directory/

From Python:

from loone_data_prep.utils import get_dbkeys
from loone_data_prep.water_level_data import hydro
from loone_data_prep import LOONE_DATA_PREP

input_dir = '/path/to/workspace/'
output_dir = '/path/to/output/directory/'

# Get dbkeys for water level data
dbkeys = get_dbkeys(
    station_ids=["L001", "L005", "L006", "LZ40"],
    category="SW",
    param="STG",
    stat="MEAN",
    recorder="CR10",
    freq="DA",
    detail_level="dbkey"
)

# Get water level data
hydro.get(
    workspace=input_dir,
    name="lo_stage",
    dbkeys=dbkeys,
    date_min="1950-01-01",
    date_max="2023-03-31"
)

# Prepare data for LOONE
LOONE_DATA_PREP(input_dir, output_dir)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

loone_data_prep-0.1.4.tar.gz (36.5 kB view details)

Uploaded Source

Built Distribution

loone_data_prep-0.1.4-py3-none-any.whl (44.5 kB view details)

Uploaded Python 3

File details

Details for the file loone_data_prep-0.1.4.tar.gz.

File metadata

  • Download URL: loone_data_prep-0.1.4.tar.gz
  • Upload date:
  • Size: 36.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for loone_data_prep-0.1.4.tar.gz
Algorithm Hash digest
SHA256 09b69585c88eb886c516a1735bb75a7bfd572e84c812d850b299ebe0e32cc730
MD5 b48d2ba5a32cc775db01df4dc681de0e
BLAKE2b-256 5538495389f125f1f43bcfcac8cf4e5835f55591f155dde34c88dee7fe947c99

See more details on using hashes here.

File details

Details for the file loone_data_prep-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for loone_data_prep-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 de638a0b0f7fe52017659dcf98c1343bcd5963b0ce47ca26399d5d16997a2eac
MD5 2f09bc197d89dd2d1978f02d90c5c27d
BLAKE2b-256 382c98935d18352da96da99dc72da58a057d11157eabaf82a0b106b2c8fce350

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page