Prepare data to run the LOONE model.
Project description
LOONE_DATA_PREP
LOONE_DATA_PREP
Prepare data for the LOONE water quality model.
Link to LOONE model repository: https://github.com/osamatarabih/LOONE
Prerequisites:
- R (https://www.r-project.org/)
- R packages: dbhydroR, rio, dplyr
Installation:
cd /path/to/loone_data_prep/
pip install .
Examples
From the command line:
# Get flow data
python -m loone_data_prep.flow_data.get_inflows /path/to/workspace/
python -m loone_data_prep.flow_data.get_outflows /path/to/workspace/
python -m loone_data_prep.flow_data.S65E_total /path/to/workspace/
# Get water quality data
python -m loone_data_prep.water_quality_data.get_inflows /path/to/workspace/
python -m loone_data_prep.water_quality_data.get_lake_wq /path/to/workspace/
# Get weather data
python -m loone_data_prep.weather_data.get_all /path/to/workspace/
# Get water level
python -m loone_data_prep.water_level_data.get_all /path/to/workspace/
# Interpolate data
python -m loone_data_prep.utils interp_all /path/to/workspace/
# Prepare data for LOONE
python -m loone_data_prep.LOONE_DATA_PREP /path/to/workspace/ /path/to/output/directory/
From Python:
from loone_data_prep.utils import get_dbkeys
from loone_data_prep.water_level_data import hydro
from loone_data_prep import LOONE_DATA_PREP
input_dir = '/path/to/workspace/'
output_dir = '/path/to/output/directory/'
# Get dbkeys for water level data
dbkeys = get_dbkeys(
station_ids=["L001", "L005", "L006", "LZ40"],
category="SW",
param="STG",
stat="MEAN",
recorder="CR10",
freq="DA",
detail_level="dbkey"
)
# Get water level data
hydro.get(
workspace=input_dir,
name="lo_stage",
dbkeys=dbkeys,
date_min="1950-01-01",
date_max="2023-03-31"
)
# Prepare data for LOONE
LOONE_DATA_PREP(input_dir, output_dir)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
loone_data_prep-0.1.4.tar.gz
(36.5 kB
view details)
Built Distribution
File details
Details for the file loone_data_prep-0.1.4.tar.gz
.
File metadata
- Download URL: loone_data_prep-0.1.4.tar.gz
- Upload date:
- Size: 36.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 09b69585c88eb886c516a1735bb75a7bfd572e84c812d850b299ebe0e32cc730 |
|
MD5 | b48d2ba5a32cc775db01df4dc681de0e |
|
BLAKE2b-256 | 5538495389f125f1f43bcfcac8cf4e5835f55591f155dde34c88dee7fe947c99 |
File details
Details for the file loone_data_prep-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: loone_data_prep-0.1.4-py3-none-any.whl
- Upload date:
- Size: 44.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | de638a0b0f7fe52017659dcf98c1343bcd5963b0ce47ca26399d5d16997a2eac |
|
MD5 | 2f09bc197d89dd2d1978f02d90c5c27d |
|
BLAKE2b-256 | 382c98935d18352da96da99dc72da58a057d11157eabaf82a0b106b2c8fce350 |