Skip to main content

Prepare data to run the LOONE model.

Project description

LOONE_DATA_PREP

LOONE_DATA_PREP

Prepare data for the LOONE water quality model.

Line to the LOONE model: https://pypi.org/project/loone Link to LOONE model repository: https://github.com/Aquaveo/LOONE

Prerequisites:

Installation:

pip install loone_data_prep

Development Installation:

cd /path/to/loone_data_prep/repo
pip install -e .

Examples

From the command line:

# Get flow data
python -m loone_data_prep.flow_data.get_inflows /path/to/workspace/
python -m loone_data_prep.flow_data.get_outflows /path/to/workspace/
python -m loone_data_prep.flow_data.S65E_total /path/to/workspace/

# Get water quality data
python -m loone_data_prep.water_quality_data.get_inflows /path/to/workspace/
python -m loone_data_prep.water_quality_data.get_lake_wq /path/to/workspace/

# Get weather data
python -m loone_data_prep.weather_data.get_all /path/to/workspace/

# Get water level
python -m loone_data_prep.water_level_data.get_all /path/to/workspace/

# Interpolate data
python -m loone_data_prep.utils interp_all /path/to/workspace/

# Prepare data for LOONE
python -m loone_data_prep.LOONE_DATA_PREP /path/to/workspace/ /path/to/output/directory/

From Python:

from loone_data_prep.utils import get_dbkeys
from loone_data_prep.water_level_data import hydro
from loone_data_prep import LOONE_DATA_PREP

input_dir = '/path/to/workspace/'
output_dir = '/path/to/output/directory/'

# Get dbkeys for water level data
dbkeys = get_dbkeys(
    station_ids=["L001", "L005", "L006", "LZ40"],
    category="SW",
    param="STG",
    stat="MEAN",
    recorder="CR10",
    freq="DA",
    detail_level="dbkey"
)

# Get water level data
hydro.get(
    workspace=input_dir,
    name="lo_stage",
    dbkeys=dbkeys,
    date_min="1950-01-01",
    date_max="2023-03-31"
)

# Prepare data for LOONE
LOONE_DATA_PREP(input_dir, output_dir)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

loone_data_prep-0.1.5.tar.gz (37.5 kB view details)

Uploaded Source

Built Distribution

loone_data_prep-0.1.5-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file loone_data_prep-0.1.5.tar.gz.

File metadata

  • Download URL: loone_data_prep-0.1.5.tar.gz
  • Upload date:
  • Size: 37.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for loone_data_prep-0.1.5.tar.gz
Algorithm Hash digest
SHA256 1018b408a30a6ba46ae1aa7ead7d1fd87d15e9d4d13c60b7ddc5bbd72887bb97
MD5 496c88c5e68941b5034a8f71254a994b
BLAKE2b-256 f8e73a39a458e7406e6dac9299dcea270d749032854e5f7890aa614e1c9ba046

See more details on using hashes here.

File details

Details for the file loone_data_prep-0.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for loone_data_prep-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 bb6586f334673337f3d7d37672bb51fb776609fcca1bf0701e408c79c80e9d9a
MD5 a2342e727454276c65a8a16d252b9af8
BLAKE2b-256 dc92abcfedd767d61cde28c9fefde3b1c72e35ee77629aa9a3e1970faa79a4af

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page