Skip to main content

Prepare data to run the LOONE model.

Project description

LOONE_DATA_PREP

LOONE_DATA_PREP

Prepare data for the LOONE water quality model.

Line to the LOONE model: https://pypi.org/project/loone Link to LOONE model repository: https://github.com/Aquaveo/LOONE

Prerequisites:

Installation:

pip install loone_data_prep

Development Installation:

cd /path/to/loone_data_prep/repo
pip install -e .

Examples

From the command line:

# Get flow data
python -m loone_data_prep.flow_data.get_inflows /path/to/workspace/
python -m loone_data_prep.flow_data.get_outflows /path/to/workspace/
python -m loone_data_prep.flow_data.S65E_total /path/to/workspace/

# Get water quality data
python -m loone_data_prep.water_quality_data.get_inflows /path/to/workspace/
python -m loone_data_prep.water_quality_data.get_lake_wq /path/to/workspace/

# Get weather data
python -m loone_data_prep.weather_data.get_all /path/to/workspace/

# Get water level
python -m loone_data_prep.water_level_data.get_all /path/to/workspace/

# Interpolate data
python -m loone_data_prep.utils interp_all /path/to/workspace/

# Prepare data for LOONE
python -m loone_data_prep.LOONE_DATA_PREP /path/to/workspace/ /path/to/output/directory/

From Python:

from loone_data_prep.utils import get_dbkeys
from loone_data_prep.water_level_data import hydro
from loone_data_prep import LOONE_DATA_PREP

input_dir = '/path/to/workspace/'
output_dir = '/path/to/output/directory/'

# Get dbkeys for water level data
dbkeys = get_dbkeys(
    station_ids=["L001", "L005", "L006", "LZ40"],
    category="SW",
    param="STG",
    stat="MEAN",
    recorder="CR10",
    freq="DA",
    detail_level="dbkey"
)

# Get water level data
hydro.get(
    workspace=input_dir,
    name="lo_stage",
    dbkeys=dbkeys,
    date_min="1950-01-01",
    date_max="2023-03-31"
)

# Prepare data for LOONE
LOONE_DATA_PREP(input_dir, output_dir)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

loone_data_prep-0.1.6.tar.gz (37.9 kB view details)

Uploaded Source

Built Distribution

loone_data_prep-0.1.6-py3-none-any.whl (45.7 kB view details)

Uploaded Python 3

File details

Details for the file loone_data_prep-0.1.6.tar.gz.

File metadata

  • Download URL: loone_data_prep-0.1.6.tar.gz
  • Upload date:
  • Size: 37.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for loone_data_prep-0.1.6.tar.gz
Algorithm Hash digest
SHA256 c706918b0ad1d7f4443cd49a3c7290d97c598ed384ff0dde9daee55451bbdd1a
MD5 4bd75b3734bb6aefe15ca0587d9bfdb0
BLAKE2b-256 371c9a14d4722fe420a2289c07c18342a5c9cc2cfb65adc9a96352beba47dc37

See more details on using hashes here.

File details

Details for the file loone_data_prep-0.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for loone_data_prep-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 a49f92667f29dfbc2f350d1ab35640a0f2b3bde2c5731b10328574c92a7d214e
MD5 1435b44342081532710515e8b359647d
BLAKE2b-256 8f371d28753bccc5ef4fa6dbde542cd9f01b918bb1f3f2470d4389f056aaebcf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page