Skip to main content

Prepare data to run the LOONE model.

Project description

LOONE_DATA_PREP

LOONE_DATA_PREP

Prepare data for the LOONE water quality model.

Line to the LOONE model: https://pypi.org/project/loone Link to LOONE model repository: https://github.com/Aquaveo/LOONE

Prerequisites:

Installation:

pip install loone_data_prep

Development Installation:

cd /path/to/loone_data_prep/repo
pip install -e .

Examples

From the command line:

# Get flow data
python -m loone_data_prep.flow_data.get_inflows /path/to/workspace/
python -m loone_data_prep.flow_data.get_outflows /path/to/workspace/
python -m loone_data_prep.flow_data.S65E_total /path/to/workspace/

# Get water quality data
python -m loone_data_prep.water_quality_data.get_inflows /path/to/workspace/
python -m loone_data_prep.water_quality_data.get_lake_wq /path/to/workspace/

# Get weather data
python -m loone_data_prep.weather_data.get_all /path/to/workspace/

# Get water level
python -m loone_data_prep.water_level_data.get_all /path/to/workspace/

# Interpolate data
python -m loone_data_prep.utils interp_all /path/to/workspace/

# Prepare data for LOONE
python -m loone_data_prep.LOONE_DATA_PREP /path/to/workspace/ /path/to/output/directory/

From Python:

from loone_data_prep.utils import get_dbkeys
from loone_data_prep.water_level_data import hydro
from loone_data_prep import LOONE_DATA_PREP

input_dir = '/path/to/workspace/'
output_dir = '/path/to/output/directory/'

# Get dbkeys for water level data
dbkeys = get_dbkeys(
    station_ids=["L001", "L005", "L006", "LZ40"],
    category="SW",
    param="STG",
    stat="MEAN",
    recorder="CR10",
    freq="DA",
    detail_level="dbkey"
)

# Get water level data
hydro.get(
    workspace=input_dir,
    name="lo_stage",
    dbkeys=dbkeys,
    date_min="1950-01-01",
    date_max="2023-03-31"
)

# Prepare data for LOONE
LOONE_DATA_PREP(input_dir, output_dir)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

loone_data_prep-0.1.7.tar.gz (47.7 kB view details)

Uploaded Source

Built Distribution

loone_data_prep-0.1.7-py3-none-any.whl (59.5 kB view details)

Uploaded Python 3

File details

Details for the file loone_data_prep-0.1.7.tar.gz.

File metadata

  • Download URL: loone_data_prep-0.1.7.tar.gz
  • Upload date:
  • Size: 47.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for loone_data_prep-0.1.7.tar.gz
Algorithm Hash digest
SHA256 b10a0c576a38287964f20daa0de383b48916dcf88afb0252c7be19b0e10fa307
MD5 6865a3ddfb31238775afdd3dcbac507e
BLAKE2b-256 cec432af8f88797ef7ee43538da210de469de9b7e50134dbe701ca7ef64b1736

See more details on using hashes here.

File details

Details for the file loone_data_prep-0.1.7-py3-none-any.whl.

File metadata

File hashes

Hashes for loone_data_prep-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 120cd740b6906887f3561d34b080b1c84db50542334673172f08d4afaf1dc4f6
MD5 80be1d92e5508e99178e8010bec1f10a
BLAKE2b-256 71902f3e0310ea7b2e1bfd0423a077753dacb780bedeca20b0733800bb4884ff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page