Prepare data to run the LOONE model.
Project description
LOONE_DATA_PREP
LOONE_DATA_PREP
Prepare data for the LOONE water quality model.
Line to the LOONE model: https://pypi.org/project/loone Link to LOONE model repository: https://github.com/Aquaveo/LOONE
Prerequisites:
- R (https://www.r-project.org/)
- R packages: dbhydroR, rio, dplyr
Installation:
pip install loone_data_prep
Development Installation:
cd /path/to/loone_data_prep/repo
pip install -e .
Examples
From the command line:
# Get flow data
python -m loone_data_prep.flow_data.get_inflows /path/to/workspace/
python -m loone_data_prep.flow_data.get_outflows /path/to/workspace/
python -m loone_data_prep.flow_data.S65E_total /path/to/workspace/
# Get water quality data
python -m loone_data_prep.water_quality_data.get_inflows /path/to/workspace/
python -m loone_data_prep.water_quality_data.get_lake_wq /path/to/workspace/
# Get weather data
python -m loone_data_prep.weather_data.get_all /path/to/workspace/
# Get water level
python -m loone_data_prep.water_level_data.get_all /path/to/workspace/
# Interpolate data
python -m loone_data_prep.utils interp_all /path/to/workspace/
# Prepare data for LOONE
python -m loone_data_prep.LOONE_DATA_PREP /path/to/workspace/ /path/to/output/directory/
From Python:
from loone_data_prep.utils import get_dbkeys
from loone_data_prep.water_level_data import hydro
from loone_data_prep import LOONE_DATA_PREP
input_dir = '/path/to/workspace/'
output_dir = '/path/to/output/directory/'
# Get dbkeys for water level data
dbkeys = get_dbkeys(
station_ids=["L001", "L005", "L006", "LZ40"],
category="SW",
param="STG",
stat="MEAN",
recorder="CR10",
freq="DA",
detail_level="dbkey"
)
# Get water level data
hydro.get(
workspace=input_dir,
name="lo_stage",
dbkeys=dbkeys,
date_min="1950-01-01",
date_max="2023-03-31"
)
# Prepare data for LOONE
LOONE_DATA_PREP(input_dir, output_dir)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
loone_data_prep-0.1.7.tar.gz
(47.7 kB
view details)
Built Distribution
File details
Details for the file loone_data_prep-0.1.7.tar.gz
.
File metadata
- Download URL: loone_data_prep-0.1.7.tar.gz
- Upload date:
- Size: 47.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b10a0c576a38287964f20daa0de383b48916dcf88afb0252c7be19b0e10fa307 |
|
MD5 | 6865a3ddfb31238775afdd3dcbac507e |
|
BLAKE2b-256 | cec432af8f88797ef7ee43538da210de469de9b7e50134dbe701ca7ef64b1736 |
File details
Details for the file loone_data_prep-0.1.7-py3-none-any.whl
.
File metadata
- Download URL: loone_data_prep-0.1.7-py3-none-any.whl
- Upload date:
- Size: 59.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 120cd740b6906887f3561d34b080b1c84db50542334673172f08d4afaf1dc4f6 |
|
MD5 | 80be1d92e5508e99178e8010bec1f10a |
|
BLAKE2b-256 | 71902f3e0310ea7b2e1bfd0423a077753dacb780bedeca20b0733800bb4884ff |