Skip to main content

Prepare data to run the LOONE model.

Project description

LOONE_DATA_PREP

LOONE_DATA_PREP

Prepare data for the LOONE water quality model.

Line to the LOONE model: https://pypi.org/project/loone Link to LOONE model repository: https://github.com/Aquaveo/LOONE

Prerequisites:

Installation:

pip install loone_data_prep

Development Installation:

cd /path/to/loone_data_prep/repo
pip install -e .

Examples

From the command line:

# Get flow data
python -m loone_data_prep.flow_data.get_inflows /path/to/workspace/
python -m loone_data_prep.flow_data.get_outflows /path/to/workspace/
python -m loone_data_prep.flow_data.S65E_total /path/to/workspace/

# Get water quality data
python -m loone_data_prep.water_quality_data.get_inflows /path/to/workspace/
python -m loone_data_prep.water_quality_data.get_lake_wq /path/to/workspace/

# Get weather data
python -m loone_data_prep.weather_data.get_all /path/to/workspace/

# Get water level
python -m loone_data_prep.water_level_data.get_all /path/to/workspace/

# Interpolate data
python -m loone_data_prep.utils interp_all /path/to/workspace/

# Prepare data for LOONE
python -m loone_data_prep.LOONE_DATA_PREP /path/to/workspace/ /path/to/output/directory/

From Python:

from loone_data_prep.utils import get_dbkeys
from loone_data_prep.water_level_data import hydro
from loone_data_prep import LOONE_DATA_PREP

input_dir = '/path/to/workspace/'
output_dir = '/path/to/output/directory/'

# Get dbkeys for water level data
dbkeys = get_dbkeys(
    station_ids=["L001", "L005", "L006", "LZ40"],
    category="SW",
    param="STG",
    stat="MEAN",
    recorder="CR10",
    freq="DA",
    detail_level="dbkey"
)

# Get water level data
hydro.get(
    workspace=input_dir,
    name="lo_stage",
    dbkeys=dbkeys,
    date_min="1950-01-01",
    date_max="2023-03-31"
)

# Prepare data for LOONE
LOONE_DATA_PREP(input_dir, output_dir)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

loone_data_prep-0.1.8.tar.gz (51.2 kB view details)

Uploaded Source

Built Distribution

loone_data_prep-0.1.8-py3-none-any.whl (63.0 kB view details)

Uploaded Python 3

File details

Details for the file loone_data_prep-0.1.8.tar.gz.

File metadata

  • Download URL: loone_data_prep-0.1.8.tar.gz
  • Upload date:
  • Size: 51.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for loone_data_prep-0.1.8.tar.gz
Algorithm Hash digest
SHA256 7f28d1035a23431ef1fd1222a000650db9667eaed0bc85363396dba6bb38f9e1
MD5 92542fb4f53251af8a1b9ee36885dca4
BLAKE2b-256 eb73abe779ca8b68d1cebe0d0ef58ee39d87ec84fc96abd7b52a7163e928b6e5

See more details on using hashes here.

File details

Details for the file loone_data_prep-0.1.8-py3-none-any.whl.

File metadata

File hashes

Hashes for loone_data_prep-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 599406455fc9b63b0c6e0eeecdea442579b212ad6ec55dd3bf48c2d84b5e49fc
MD5 2210d51e32f46bf8f70c5c0d21e4f118
BLAKE2b-256 49ba89233185186737ce2af612daf1f19c33aee785f3c31828c6e54a6c5b65f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page