A Production Tool for Embodied AI.
Project description
:scroll:Loopquest
A Production Tool for Embodied AI.
- :video_camera:Tutorial Video
- :house:Discord
Major features
- Log all the observation, action, reward, rendered images into database with only ONE extra line of code.
env = gymnasium.make("MountainCarContinuous-v0", render_mode="rgb_array")
->
env = LoopquestGymWrapper(
gymnasium.make("MountainCarContinuous-v0", render_mode="rgb_array")
)
- Beautiful frontend to visualize all the data and rendered images / videos of the simulation environment.
- Compare your experiments in an intuitive way.
- Directly trainable data for robotics foundation model. Select and download the (observation, action, reward) data with the dataloader interfaces of the most popular deep learning frameworks (e.g. tensorflow, pytorch, huggingface dataset apis).
Installation
For stable version, run
pip install loopquest
For dev version or loopquest project contributors, clone the git to your local machine by running
git clone https://github.com/LoopMind-AI/loopquest.git
Change to the project root folder and install the package
cd loopquest
pip install -e .
How to run (dev only for now)
At loopquest
folder, bring up the backend server and database,
docker compose up --build
Bring up the frontend web app,
cd frontend
npm run dev
Then run quickstart script,
python examples/quickstart.py
The command prompt should mention "Check your experiment progress on http://localhost:3000/experiment/<exp_id>
".
Quick Start Example
import gymnasium
from loopquest.gym_wrappers import LoopquestGymWrapper
experiment_name = "test"
env = LoopquestGymWrapper(
gymnasium.make("MountainCarContinuous-v0", render_mode="rgb_array"),
experiment_name,
)
obs, info = env.reset()
for i in range(100):
action = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(action)
rgb_array = env.render()
if terminated or truncated:
break
env.close()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
loopquest-0.1.4.tar.gz
(12.8 kB
view hashes)
Built Distribution
loopquest-0.1.4-py3-none-any.whl
(12.8 kB
view hashes)
Close
Hashes for loopquest-0.1.4-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 65c9991b502db05288eee0cc14d3ee3cd5d93173bbba5f849ee42ec395ac4978 |
|
MD5 | 1d58eba99532ed081b8e43b9643aad27 |
|
BLAKE2b-256 | a18e68383dd220d41e998fc4415f22c5dfefec28f31edfa6c2c37cc23ec415f8 |