Skip to main content

Generate synthetic signals for ML pipelines

Project description

loopyng

Generate synthetic signals for ML pipelines

To install: pip install loopyng

functionality

This notebook gathers various examples of the functionality of loopyng:

  • Synthetic datasets
    • sound-like datasets
    • diagnosis datasets
    • signal generation
  • Plotting and visualization
    • plot
    • display
    • melspectrograms
  • Infinite waveform from spectrums
  • Various sample sounds
  • Voiced time
from loopyng import (mk_sine_wf, 
                 freq_based_stationary_wf, 
                 BinarySound, 
                 WfGen, 
                 TimeSound, 
                 mk_some_buzz_wf, 
                 wf_with_timed_bleeps,
                 Sound,
                 plot_wf,
                 disp_wf,
                 InfiniteWaveform,
                 Voicer, 
                 tell_time_continuously,
                 random_samples,
                 pure_tone,
                 triangular_tone,
                 square_tone,
                 AnnotatedWaveform,
                 gen_words,
                 categorical_gen,
                 bernoulli_gen,
                 create_session,
                 session_to_df
                )
import matplotlib.pyplot as plt
from numpy.random import randint
import numpy as np

Synthetic datasets

There are several different forms of synthetic data that loopyng can produce to be used in machine learning pipelines, with the first being sound-like datasets generally in the form of sine waves

Sound-like datasets

mk_sine_wf provides an easy way to generate a simple waveform for synthetic testing purposes

DFLT_N_SAMPLES = 21 * 2048
DFLT_SR = 44100
wf = mk_sine_wf(freq=5, n_samples=DFLT_N_SAMPLES, sr=DFLT_SR, phase=0, gain=1)
plt.plot(wf);

png

wf = mk_sine_wf(freq=20, n_samples=DFLT_N_SAMPLES, sr=DFLT_SR, phase = 0.25, gain = 3)
plt.plot(wf);

png

freq_based_stationary_wf provides the ability to generate a more complex waveform by mixing sine waves of different frequencies with potentially different weights

wf_mix = freq_based_stationary_wf(freqs=(2, 4, 6, 8), weights=None,
                             n_samples = DFLT_N_SAMPLES, sr = DFLT_SR)
plt.plot(wf_mix);

png

wf_mix = freq_based_stationary_wf(freqs=(2, 4, 6, 8), weights=(3,3,1,1),
                             n_samples = DFLT_N_SAMPLES, sr = DFLT_SR)
plt.plot(wf_mix);

png

WfGen is a class that allows for the generation of sinusoidal waveforms, the generation of lookup tables to be used in generating waveforms, and frequency weighted mixed waveforms

wfgen = WfGen(sr=44100, buf_size_frm=2048, amplitude=0.5)
lookup = np.array(wfgen.mk_lookup_table(freq=880))
wf = wfgen.mk_sine_wf(n_frm=100, freq=880)
np.array(lookup).T
array([ 0.        ,  0.06252526,  0.12406892,  0.1836648 ,  0.24037727,
        0.293316  ,  0.34164989,  0.38462013,  0.42155213,  0.45186607,
        0.47508605,  0.49084754,  0.49890309,  0.49912624,  0.49151348,
        0.47618432,  0.45337943,  0.42345682,  0.38688626,  0.34424188,
        0.29619315,  0.24349441,  0.186973  ,  0.12751624,  0.06605758,
        0.00356187, -0.05898977, -0.12061531, -0.18034728, -0.23724793,
       -0.29042397, -0.33904057, -0.38233448, -0.41962604, -0.45032977,
       -0.47396367, -0.4901567 , -0.49865463, -0.49932406, -0.49215447,
       -0.47725843, -0.45486979, -0.42534003, -0.38913276, -0.34681639,
       -0.29905527, -0.2465992 , -0.19027171, -0.13095709, -0.06958655])
plt.plot(wf);

png

wf_weight = wfgen.mk_wf_from_freq_weight_array(n_frm=10000, freq_weight_array=(10,1,6))
plt.plot(wf_weight);

png

Diagnosis datasets

loopyng can also produce diagnosis datasets to be applied to machine learning pipelines

BinarySound is a class that generates binary waveforms

bs = BinarySound(nbits=50, redundancy=142, repetition=3, header_size_words=1)
utc = randint(0,2,50)
wf = bs.mk_phrase(utc)
plt.plot(wf[:200]);
all(bs.decode(wf) == utc)
True

png

BinarySound can also be instantiated using audio parameters using the for_audio_params class method

bs = BinarySound.for_audio_params(nbits=50, freq=6000, chk_size_frm=43008, sr=44100, header_size_words=1)
wf = bs.mk_phrase(utc)
plt.plot(wf[:200]);
all(bs.decode(wf) == utc)
True

png

utc phrases can be generated using mk_utc_phrases when BinarySound is instantiated with audio parameters

plt.plot(bs.mk_utc_phrases()[:200]);

png

TimeSound is a class that generates timestamped waveform data

time = TimeSound(sr=44100, buf_size_frm=2048, amplitude=0.5, n_ums_bits=30)
wf = time.timestamped_wf()
plt.plot(wf[2000:2300]);

png

mk_some_buzz_wf and wf_with_timed_bleeps are two more options to generate synthetic data of diagnosis sounds

wf = mk_some_buzz_wf(sr=DFLT_SR)
plt.plot(wf[:500]);

png

wf = wf_with_timed_bleeps(n_samples=DFLT_SR*2, bleep_loc=400, bleep_spec=100, sr=DFLT_SR)
plt.plot(wf[:150]);

png

Signal generation

loopyng can create signals generated by sequences of symbols, perturbed by outliers injected at given points

symb_res = categorical_gen(gen_words)
out_res = bernoulli_gen(p_out=0.01)
df = session_to_df(create_session(symb_res, out_res, alphabet=list('abcde'), session_length=500))
df.plot(subplots=True, figsize=(20,7));

png

Plotting and visualization

loopyng also provides several options for plotting and visualization for the synthetic datasets it generates

wfgen = WfGen()
wf = list()
for i in range(1, 1000, 20):
    wf.extend(list(wfgen.mk_sine_wf(n_frm=2048, freq=i)))
wf = np.array(wf)
sr = 44100

Plot waveform

plot_wf(wf[:20000], sr)

png

Display waveform

disp_wf(wf, sr)

png

Melspectrograms with Sound

snd = Sound(wf=wf, sr=sr)
snd.plot_wf(wf=wf[:20000], sr=sr)

png

snd.melspectrogram(plot_it=False)
array([[-63.34856485, -45.14910401, -36.14726097, ..., -80.        ,
        -73.35788085, -60.58728436],
       [-67.99632241, -74.80503122, -80.        , ..., -80.        ,
        -72.1600597 , -60.16803079],
       [-80.        , -80.        , -80.        , ..., -80.        ,
        -72.90050429, -60.90871386],
       ...,
       [-80.        , -80.        , -80.        , ..., -80.        ,
        -80.        , -80.        ],
       [-80.        , -80.        , -80.        , ..., -80.        ,
        -80.        , -80.        ],
       [-80.        , -80.        , -80.        , ..., -80.        ,
        -80.        , -80.        ]])
snd.display()

png

Infinite waveform from spectrum

loopyng also provides the functionality to create an infinite waveform based on a given spectrum, and a noise amplifier if desired

iwf = InfiniteWaveform(wf)
wf = list(iwf.query(0,500000))
disp_wf(wf)

png

Sound(wf=wf).display()

png

Sample sounds

loopyng also provides several functions to generate sample sounds shown below

Random sample

wf = random_samples(chk_size_frm=21*2048, max_amplitude=30000)
disp_wf(wf=wf, sr=sr)
Sound(wf=wf).display()

png

png

Pure tone sample

wf = pure_tone(chk_size_frm=21*2048, freq=440, sr=44100, max_amplitude=30000)
disp_wf(wf=wf, sr=sr)
Sound(wf=wf).display()
/Users/owenlloyd/opt/anaconda3/envs/oto3/lib/python3.8/site-packages/matplotlib/axes/_axes.py:7723: RuntimeWarning: divide by zero encountered in log10
  Z = 10. * np.log10(spec)

png

png

Triangular tone sample

wf = triangular_tone(chk_size_frm=21*2048, freq=440, sr=44100, max_amplitude=30000)
disp_wf(wf=wf, sr=sr)
Sound(wf=wf).display()

png

png

Square tone sample

wf = square_tone(chk_size_frm=21*2048, freq=440, sr=44100, max_amplitude=30000)
disp_wf(wf=wf, sr=sr)
Sound(wf=wf).display()

png

png

Annotated Waveform

awf = AnnotatedWaveform(chk_size_frm=21*2048, freq=440, sr=44100, max_amplitude=30000)
gen = awf.chk_and_tag_gen()
list(gen)
[(array([-14025,  11555,  22270, ...,  10243, -18225,   3874], dtype=int16),
  'random'),
 (array([    0,  1902,  3797, ...,  9361, 11149, 12893], dtype=int16),
  'pure_tone'),
 (array([-30000, -29900, -29800, ...,  10500,  10600,  10700], dtype=int16),
  'triangular_tone'),
 (array([30000, 30000, 30000, ..., 30000, 30000, 30000], dtype=int16),
  'square_tone')]
awf.get_wf_and_annots()
(array([  5183,  10421, -21645, ...,  30000,  30000,  30000], dtype=int16),
 {'random': [(0, 43008)],
  'pure_tone': [(43008, 86016)],
  'triangular_tone': [(86016, 129024)],
  'square_tone': [(129024, 172032)]})

Voiced time

Finally loopyng provides a function that will tell the time continuously with parameters for the frequency, speed, voice, volume, and time format

tell_time_continuously(every_secs=5, verbose=True)
15 45 11
15 45 16
15 45 21
15 45 26
KeyboardInterrupt!!!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

loopyng-0.1.35.tar.gz (42.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

loopyng-0.1.35-py3-none-any.whl (46.7 kB view details)

Uploaded Python 3

File details

Details for the file loopyng-0.1.35.tar.gz.

File metadata

  • Download URL: loopyng-0.1.35.tar.gz
  • Upload date:
  • Size: 42.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.17

File hashes

Hashes for loopyng-0.1.35.tar.gz
Algorithm Hash digest
SHA256 3e2d0a393b298a40374aef8a2fd9a7c2dfc8d68ff75c2468066b58bebe882209
MD5 c60049528b39bb8355f7ae5ed966c278
BLAKE2b-256 a94836274f17cff7af9fdf17c6fd94c136e81ac15f2d426f84a25a77c154a095

See more details on using hashes here.

File details

Details for the file loopyng-0.1.35-py3-none-any.whl.

File metadata

  • Download URL: loopyng-0.1.35-py3-none-any.whl
  • Upload date:
  • Size: 46.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.17

File hashes

Hashes for loopyng-0.1.35-py3-none-any.whl
Algorithm Hash digest
SHA256 d1f5ac2b747e84b6a47b2fc4fd4013d238e9ba99b33061d2863c5962c0096baa
MD5 06d85c276d4d6e4c547034f924474876
BLAKE2b-256 19428aaa4d959f77bf1c1e8c7143f26edcdadcfa7096e0223c3c0f412f92c5ed

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page