Skip to main content

A light weight python ORM without models.

Project description

https://img.shields.io/pypi/v/lorm.svg

Lorm is a light weight ORM library for Python, model-less, Django style lookup expressions. It’s suitable for small standalone database script.

Installation

The last stable release is available on PyPI and can be installed with pip:

$ pip install lorm

Example

CREATE TABLE `pets` (
  `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `name` varchar(20) NOT NULL DEFAULT '',
  `add_time` datetime DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

Connect to Mysql

>>> c = lorm.mysql_connect('localhost', 3306, 'root', 'root', 'test')

Insert

>>> c.pets.create(name='cat')
1

Query

>>> c.pets.get(id=1)
{u'id': 2, u'name': u'cat'}
>>> c.last_query
select * from pets where id=1 limit 1

Row Style

>>> c.pets.filter(id__lt=10).select('id')[:]
[{u'id': 1}, {u'id': 2}, {u'id': 4}, {u'id': 5}, {u'id': 6}, {u'id': 7}, {u'id': 8}, {u'id': 9}]
>>> c.pets.filter(id__lt=10).values('id')[:]
((1,), (2,), (4,), (5,), (6,), (7,), (8,), (9,))
>>> c.pets.filter(id__lt=10).flat('id')[:]
[1, 2, 4, 5, 6, 7, 8, 9]

Raw SQL

>>> c.fetchall("select * from pets")
((1, u'cat'), (2, u'dog'), (3, u'bird'))

For more examples, see test.py

Features

  • No Model, use table name directly.

  • Auto reconnect

  • Connection pool

  • Django style lookup expressions

  • Threading safe

Requirements

  • pymysql

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lorm-0.2.18.zip (9.6 kB view details)

Uploaded Source

File details

Details for the file lorm-0.2.18.zip.

File metadata

  • Download URL: lorm-0.2.18.zip
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for lorm-0.2.18.zip
Algorithm Hash digest
SHA256 7af088882714011b568bd231e783ce67ac281fb7822331b238b84ce1992478ce
MD5 6d22e36b33e3f583f2bad9b677235192
BLAKE2b-256 025d434bf856991e5ee696eb356f9622c4d092b940a02ab2bc343aa0264ec536

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page