Skip to main content

A library for computing loss landscapes for neural networks

Project description

Visualizing the Loss Landscape of Neural Nets

This repository is a fork of the original repository by the authors of the paper

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer and Tom Goldstein. Visualizing the Loss Landscape of Neural Nets. NIPS, 2018.

We add simple and easy to use installation and running instructions.

An interactive 3D visualizer for loss surfaces has been provided by telesens.

Given a network architecture and its pre-trained parameters, this tool calculates and visualizes the loss surface along random direction(s) near the optimal parameters. The calculation can be done in parallel with multiple GPUs per node, and multiple nodes. The random direction(s) and loss surface values are stored in HDF5 (.h5) files after they are produced.

Setup

Installation

Tested on Ubuntu 16.04.6 LTS with Conda 4.8.3.

Option 1

Run conda env create python=3.8 -f env.yml

(created with conda env export -f env.yml --no-builds)

Option 2

Run conda create python=3.8 --name loss_landscape --file env_explicit.txt

(created with conda list --explicit > env_explicit.txt)

Troubleshooting

If none of the above options work: Try to install the packages manually. The most important packages are listed in the section Environment.

Environment

What exactly do I need to do to make it work?

  1. If you have a new dataset: add a new folder datasets/{your_dataset_name}.
  2. Add you data to datasets/{your_dataset_name}/data.
  3. Add the model definitions to a file in datasets/{your_dataset_name}/models.
  4. Add your trained network to a file in datasets/{your_dataset_name}/trained_nets/{your_model_with_hyper_parameters}.
  5. Add a file data_loader.py in datasets/{your_dataset_name} and implement the method get_data_loaders(). You can find documentation in data_loader.py.
  6. Add a file model_loader.py in datasets/{your_dataset_name} and implement the method load(). Also add to the file a dictionary called models containing a mapping between the name of your model and the model function. You can find documentation in model_loader.py.

Examples for running it

Locally without GPU

Implicit (short version):

python plot_surface.py --name test_plot --model resnet56 --dataset cifar10 --x=-1:1:51 --y=-1:1:51 --plot \
--model_file datasets/cifar10/trained_nets/resnet56_sgd_lr=0.1_bs=128_wd=0.0005/model_300.t7

Explicit (long version):

python plot_surface.py --name test_plot --model resnet56 --dataset cifar10 --x=-1:1:51 --y=-1:1:51 --plot \
--model_file datasets/cifar10/trained_nets/resnet56_sgd_lr=0.1_bs=128_wd=0.0005/model_300.t7 \
--dir_type weights --xnorm filter --xignore biasbn --ynorm filter --yignore biasbn

On a server with 4 GPUs and 16 CPUs

Implicit (short version):

nohup python plot_surface.py --name test_plot --model init_baseline_vgglike --dataset cinic10 --x=-1:1:51 --y=-1:1:51 --plot \
--model_file datasets/cinic10/trained_nets/init_baseline_vgglike_sgd_lr=0.1_bs=128_wd=0.0005_mom=0.9_save_epoch=1_ngpu=4/model_10.t7 \
--cuda --ngpu 4 --threads 8 --batch_size 8192 > nohup.out &

Explicit (long version):

nohup python plot_surface.py --name test_plot --model init_baseline_vgglike --dataset cinic10 --x=-1:1:51 --y=-1:1:51 --plot \
--model_file datasets/cinic10/trained_nets/init_baseline_vgglike_sgd_lr=0.1_bs=128_wd=0.0005_mom=0.9_save_epoch=1_ngpu=4/model_10.t7 \
--cuda --ngpu 4 --threads 8 --batch_size 8192 \
--dir_type weights --xnorm filter --xignore biasbn --ynorm filter --yignore biasbn > nohup.out &

Please find the description of all the possible parameters in plot_surface.py. More examples can be found in plot_examples.sh.

Make sure you do not use mpi when you run it on a single machine.

Pretrained Models

The code accepts pre-trained PyTorch models for the CIFAR-10 and CINIC-10 datasets out of the box, but other datasets can also be added. To load the pre-trained model correctly, the model file should contain state_dict, which is saved from the state_dict() method. The default path for pre-trained networks is cifar10/trained_nets. Some of the pre-trained models and plotted figures can be downloaded here:

Data preprocessing

The data pre-processing method used for visualization should be consistent with the one used for model training. No data augmentation (random cropping or horizontal flipping) is used in calculating the loss values.

Troubleshooting

libgfortran 4.0.0 does not seem to be compatible with linux. Make sure you don't update the dependencies to include this.

Citation

If you find this code useful in your research, please cite:

@inproceedings{visualloss,
  title={Visualizing the Loss Landscape of Neural Nets},
  author={Li, Hao and Xu, Zheng and Taylor, Gavin and Studer, Christoph and Goldstein, Tom},
  booktitle={Neural Information Processing Systems},
  year={2018}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

loss_landscape-0.0.1.tar.gz (17.7 kB view details)

Uploaded Source

Built Distribution

loss_landscape-0.0.1-py3-none-any.whl (19.6 kB view details)

Uploaded Python 3

File details

Details for the file loss_landscape-0.0.1.tar.gz.

File metadata

  • Download URL: loss_landscape-0.0.1.tar.gz
  • Upload date:
  • Size: 17.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.2

File hashes

Hashes for loss_landscape-0.0.1.tar.gz
Algorithm Hash digest
SHA256 5abdcab93afb6a23754c86a703a81dfa50879f6c76d98cc753edae55e6562cb9
MD5 6c221cc0cdc86b53f6c3fd02f3d174d1
BLAKE2b-256 522c702411be6dea889f1732cd51538de4a35901555ae17c561243e3412be77b

See more details on using hashes here.

File details

Details for the file loss_landscape-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: loss_landscape-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 19.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.2

File hashes

Hashes for loss_landscape-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 16f99722b7aaa3bd0ba4b0d51c8a36e73ca2abd9017a7c1672f34599685842e5
MD5 18bcc51a0a1736b504058215aa7f36b2
BLAKE2b-256 7ab5575c79c2b3550506a5ad4204bee62987bd668b6df70c33f173d8d4147562

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page