lotus
Project description
LOTUS: A Query Engine For Processing Data with LLMs
Easily build knowledge-intensive LLM applications that reason over your data with LOTUS!
LOTUS (LLMs Over Tables of Unstructured and Structured Data) provides a declarative programming model and an optimized query engine for serving powerful reasoning-based query pipelines over structured and unstructured data! We provide a simple and intuitive Pandas-like API, that implements semantic operators.
Key Concept: The Semantic Operator Model
LOTUS' implements is the semantic operator programming model. Semantic operators as declarative transformations on one or more datasets, parameterized by a natural language expression, that can be implemented by a variety of AI-based algorithms. Semantic operators seamlessly extend the relational model, operating over tables that may contain traditional structured data as well as unstructured fields, such as free-form text. These composable, modular language- based operators allow you to write AI-based pipelines with high-level logic, leaving the rest of the work to the query engine! Each operator can be implemented and optimized in multiple ways, opening a rich space for execution plans, similar to relational operators. To learn more about the semantic operator model, read the full research paper.
LOTUS offers a number of semantic operators in a Pandas-like API, some of which are described below. To learn more about semantic operators provided in LOTUS, check out the full documentation, run the colab tutorial, or you can also refer to these examples.
Operator | Description |
---|---|
sem_map | Map each record using a natural language projection |
sem_filter | Keep records that match the natural language predicate |
sem_agg | Performs a natural language aggregation across all records (e.g. for summarization) |
sem_topk | Order the records by some natural langauge sorting criteria |
sem_join | Join two datasets based on a natural language predicate |
sem_dedup | Deduplicate records based on semantic similarity |
sem_index | Create a semantic similarity index over a text column |
sem_search | Perform top-k search the over a text column |
Installation
conda create -n lotus python=3.10 -y
conda activate lotus
pip install lotus-ai
Quickstart
If you're already familiar with Pandas, getting started will be a breeze! Below we provide a simple example program using the semantic join operator. The join, like many semantic operators, are specified by langex (natural language expressions), which the programmer uses to specify the operation. Each langex is parameterized by one or more table columns, denoted in brackets. The join's langex serves as a predicate and is parameterized by a right and left join key.
import pandas as pd
import lotus
from lotus.models import LM
# configure the LM, and remember to export your API key
lm = LM(model="gpt-4o-mini")
lotus.settings.configure(lm=lm)
# create dataframes with course names and skills
courses_data = {
"Course Name": [
"History of the Atlantic World",
"Riemannian Geometry",
"Operating Systems",
"Food Science",
"Compilers",
"Intro to computer science",
]
}
skills_data = {"Skill": ["Math", "Computer Science"]}
courses_df = pd.DataFrame(courses_data)
skills_df = pd.DataFrame(skills_data)
# lotus sem join
res = courses_df.sem_join(skills_df, "Taking {Course Name} will help me learn {Skill}")
print(res)
Citation
If you use LOTUS or semantic operators in a research paper, please cite this work as follows:
@misc{patel2024lotusenablingsemanticqueries,
title={LOTUS: Enabling Semantic Queries with LLMs Over Tables of Unstructured and Structured Data},
author={Liana Patel and Siddharth Jha and Carlos Guestrin and Matei Zaharia},
year={2024},
eprint={2407.11418},
archivePrefix={arXiv},
primaryClass={cs.DB},
url={https://arxiv.org/abs/2407.11418},
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file lotus_ai-0.3.0.tar.gz
.
File metadata
- Download URL: lotus_ai-0.3.0.tar.gz
- Upload date:
- Size: 32.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e30bc8cb1f5107d875a4d1ab47be7fcd9ee55beb94d42690b17685171b3d7a95 |
|
MD5 | 60e4b61f6360ca2e9d8c3a3e14e582a4 |
|
BLAKE2b-256 | 16aead0bc89d699eca9fa4536461eeff7052c6a14c70bc20838be6d1f41da7f9 |
File details
Details for the file lotus_ai-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: lotus_ai-0.3.0-py3-none-any.whl
- Upload date:
- Size: 43.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 94ae5fe667583c2d4ad3d4b259d7b793c5840e6954c50a1ebb1babf907619ba2 |
|
MD5 | 22c1b3269383fd556b7281752c125689 |
|
BLAKE2b-256 | 4fc77fea130df4e32938f81dd22f7a3221d255c754242d3e53328d898faaf167 |