Skip to main content

💟 Lovely numpy

Project description

💟 Lovely NumPy

Read full docs

More lovely stuff

Working with numbers
Community

Install

pip install lovely-numpy

or

conda install -c conda-forge lovely-numpy

How to use

How often do you find yourself debugging NumPy code? You dump your variable to the cell output, and see this:

numbers
array([[[-0.3541, -0.1975, -0.6715],
        [-0.3369, -0.1975, -0.9853],
        ...,
        [-0.4739, -0.3725, -0.689 ],
        [ 2.2489,  2.4111,  2.396 ]],

       [[-0.4054, -0.25  , -0.7238],
        [-0.4226, -0.2325, -1.0724],
        ...,
        [-0.8507, -0.6702, -1.0201],
        [ 2.1633,  2.3585,  2.3263]],

       ...,

       [[-0.8507, -0.3901, -1.1944],
        [-0.7822, -0.2325, -1.4559],
        ...,
        [-1.5014, -1.2304, -1.4733],
        [ 2.1804,  2.4111,  2.4308]],

       [[-0.8335, -0.4076, -1.2293],
        [-0.8164, -0.285 , -1.5256],
        ...,
        [-1.5528, -1.2829, -1.5256],
        [ 2.1119,  2.341 ,  2.3611]]], shape=(196, 196, 3), dtype=float32)

Was it really useful for you, as a human, to see all these numbers?

What is the shape? The size?
What are the statistics?
Are any of the values nan or inf?
Is it an image of a man holding a tench?

from lovely_numpy import lo

Lo and behold!

lo(numbers)
array[196, 196, 3] f32 n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073

Better, eh?

lo(numbers[1,:6,1]) # Still shows values if there are not too many.
array[6] f32 x∈[-0.408, -0.232] μ=-0.340 σ=0.075 [-0.250, -0.232, -0.338, -0.408, -0.408, -0.408]
spicy = numbers[0,:12,0].copy()

spicy[0] *= 10000
spicy[1] /= 10000
spicy[2] = float('inf')
spicy[3] = float('-inf')
spicy[4] = float('nan')

spicy = spicy.reshape((2,6))
lo(spicy) # Spicy stuff
array[2, 6] f32 n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.113e+03 +Inf! -Inf! NaN!
lo(np.zeros((10, 10))) # A zero array - make it obvious
array[10, 10] n=100 all_zeros
lo(spicy, verbose=True)
array[2, 6] f32 n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.113e+03 +Inf! -Inf! NaN!
array([[-3540.5432,    -0.    , ...,        nan,    -0.4054],
       [   -0.4226,    -0.4911, ...,    -0.5424,    -0.5082]],
      shape=(2, 6), dtype=float32)

Going .deeper

lo(numbers.transpose(2,1,0)).deeper
array[3, 196, 196] f32 n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073
  array[196, 196] f32 n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
  array[196, 196] f32 n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
  array[196, 196] f32 n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
# You can go deeper if you need to
lo(numbers[:3,:4]).deeper(2)
array[3, 4, 3] f32 n=36 x∈[-1.125, -0.197] μ=-0.563 σ=0.280
  array[4, 3] f32 n=12 x∈[-0.985, -0.197] μ=-0.487 σ=0.259
    array[3] f32 x∈[-0.672, -0.197] μ=-0.408 σ=0.197 [-0.354, -0.197, -0.672]
    array[3] f32 x∈[-0.985, -0.197] μ=-0.507 σ=0.343 [-0.337, -0.197, -0.985]
    array[3] f32 x∈[-0.881, -0.303] μ=-0.530 σ=0.252 [-0.405, -0.303, -0.881]
    array[3] f32 x∈[-0.776, -0.303] μ=-0.506 σ=0.199 [-0.440, -0.303, -0.776]
  array[4, 3] f32 n=12 x∈[-1.072, -0.232] μ=-0.571 σ=0.281
    array[3] f32 x∈[-0.724, -0.250] μ=-0.460 σ=0.197 [-0.405, -0.250, -0.724]
    array[3] f32 x∈[-1.072, -0.232] μ=-0.576 σ=0.360 [-0.423, -0.232, -1.072]
    array[3] f32 x∈[-0.968, -0.338] μ=-0.599 σ=0.268 [-0.491, -0.338, -0.968]
    array[3] f32 x∈[-0.968, -0.408] μ=-0.651 σ=0.235 [-0.577, -0.408, -0.968]
  array[4, 3] f32 n=12 x∈[-1.125, -0.285] μ=-0.631 σ=0.280
    array[3] f32 x∈[-0.828, -0.303] μ=-0.535 σ=0.219 [-0.474, -0.303, -0.828]
    array[3] f32 x∈[-1.125, -0.285] μ=-0.628 σ=0.360 [-0.474, -0.285, -1.125]
    array[3] f32 x∈[-1.020, -0.390] μ=-0.651 σ=0.268 [-0.542, -0.390, -1.020]
    array[3] f32 x∈[-1.003, -0.478] μ=-0.708 σ=0.219 [-0.645, -0.478, -1.003]

Now in .rgb color

The important queston - is it our man?

lo(numbers).rgb

Maaaaybe? Looks like someone normalized him.

in_stats = ( (0.485, 0.456, 0.406),     # mean
             (0.229, 0.224, 0.225) )    # std

# numbers.rgb(in_stats, cl=True) # For channel-last input format
lo(numbers).rgb(denorm=in_stats)

# Denorm is used to convert the input to [0..1], which is then mapped to RGB.

# lo(numbers).rgb(denorm="imagenet") # same as above
# lo(numbers).rgb(denorm="symmetric") # [-1 .. 1] input
# lo(numbers).rgb(denorm="minmax") # Use the min/max elements in each channel to scale the input to [0..1]

It’s indeed our hero, the Tenchman!

See the .chans

# .chans will map values betwen [-1,1] to colors.
# Make our values fit into that range to avoid clipping.
mean = np.array(in_stats[0])
std = np.array(in_stats[1])
numbers_01 = (numbers*std + mean).clip(0,1)
lo(numbers_01)
array[196, 196, 3] n=115248 (0.9Mb) x∈[0., 1.000] μ=0.361 σ=0.248
lo(numbers_01).chans

Grouping

# Make 8 images with progressively higher brightness and stack them 2x2x2.
eight_images = (np.stack([numbers]*8) + np.linspace(-2, 2, 8)[:,None,None,None])
eight_images = (eight_images
                     *np.array(in_stats[1])
                     +np.array(in_stats[0])
                ).clip(0,1).reshape(2,2,2,196,196,3)

lo(eight_images)
array[2, 2, 2, 196, 196, 3] n=921984 (7.0Mb) x∈[0., 1.000] μ=0.382 σ=0.319
lo(eight_images).rgb

Histogram

lo(numbers+3).plt

lo(numbers+3).plt(center="mean", max_s=1000)

lo(numbers+3).plt(center="range")

Options | Docs

from lovely_numpy import set_config, config, lovely
set_config(precision=5, sci_mode=True, color=False)
lo(np.array([1.,2,np.nan]))
array[3] μ=1.50000e+00 σ=5.00000e-01 NaN! [1.00000e+00, 2.00000e+00, nan]
set_config(precision=None, sci_mode=None, color=None) # None -> Reset to defaults
lo(np.array([1.,2,np.nan]))
array[3] μ=1.500 σ=0.500 NaN! [1.000, 2.000, nan]
# Or with config context manager.
with config(sci_mode=True):
    print(lo(np.array([1,2,3])))

print(lo(np.array([1,2,3])))
array[3] i64 x∈[1, 3] μ=2.000e+00 σ=8.165e-01 [1, 2, 3]
array[3] i64 x∈[1, 3] μ=2.000 σ=0.816 [1, 2, 3]

Without Lo

from lovely_numpy import rgb, chans, plot
lovely(numbers) # Returns `str`, that's why you see ''.
# Note:  lo(x) returns a wrapper object with a `__repr__` and other methods.
'array[196, 196, 3] f32 n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073'
rgb(numbers, denorm=in_stats) # OR: denorm='imagenet'

chans(numbers*0.3+0.5)

plot(numbers)

Matplotlib integration | Docs

lo(numbers).rgb(in_stats).fig # matplotlib figure

lo(numbers).plt.fig.savefig('pretty.svg') # Save it
!file pretty.svg; rm pretty.svg
pretty.svg: SVG Scalable Vector Graphics image
fig = plt.figure(figsize=(8,3))
fig.set_constrained_layout(True)
gs = fig.add_gridspec(2,2)
ax1 = fig.add_subplot(gs[0, :])
ax2 = fig.add_subplot(gs[1, 0])
ax3 = fig.add_subplot(gs[1,1:])

ax2.set_axis_off()
ax3.set_axis_off()

lo(numbers_01).plt(ax=ax1)
lo(numbers_01).rgb(ax=ax2)
lo(numbers_01).chans(ax=ax3);

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lovely_numpy-0.2.18.tar.gz (25.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

lovely_numpy-0.2.18-py3-none-any.whl (25.0 kB view details)

Uploaded Python 3

File details

Details for the file lovely_numpy-0.2.18.tar.gz.

File metadata

  • Download URL: lovely_numpy-0.2.18.tar.gz
  • Upload date:
  • Size: 25.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.9

File hashes

Hashes for lovely_numpy-0.2.18.tar.gz
Algorithm Hash digest
SHA256 b218feb22ebc4521f92191b4465a48ae3f526d7d83d0c0fa1ed1d63cce98a960
MD5 644fbed188f1121f00b1a030a382dd11
BLAKE2b-256 34c4b752f4a327cfa8f202ff787b34c7e2448a659b5d33763a6f4685473f00d1

See more details on using hashes here.

File details

Details for the file lovely_numpy-0.2.18-py3-none-any.whl.

File metadata

  • Download URL: lovely_numpy-0.2.18-py3-none-any.whl
  • Upload date:
  • Size: 25.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.9

File hashes

Hashes for lovely_numpy-0.2.18-py3-none-any.whl
Algorithm Hash digest
SHA256 f5da3ae3f1edda879169e018248042c17779cba50d29060754d7294ed1a56a3c
MD5 5d1cc154035adadc8a14e80cf6270203
BLAKE2b-256 4b2d2e321a29535b28795aefc1f6658d5c474097cb93ab1dead304a1e41dd532

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page