Lovely Tensors
Project description
Lovely Tensors
Install
pip install lovely-tensors
How to use
How often do you find yourself debuggin a neural network? You dump a tensor to the cell output, and see this:
numbers
tensor([[[-0.3541, -0.3369, -0.4054, ..., -0.5596, -0.4739, 2.2489],
[-0.4054, -0.4226, -0.4911, ..., -0.9192, -0.8507, 2.1633],
[-0.4739, -0.4739, -0.5424, ..., -1.0390, -1.0390, 2.1975],
...,
[-0.9020, -0.8335, -0.9363, ..., -1.4672, -1.2959, 2.2318],
[-0.8507, -0.7822, -0.9363, ..., -1.6042, -1.5014, 2.1804],
[-0.8335, -0.8164, -0.9705, ..., -1.6555, -1.5528, 2.1119]],
[[-0.1975, -0.1975, -0.3025, ..., -0.4776, -0.3725, 2.4111],
[-0.2500, -0.2325, -0.3375, ..., -0.7052, -0.6702, 2.3585],
[-0.3025, -0.2850, -0.3901, ..., -0.7402, -0.8102, 2.3761],
...,
[-0.4251, -0.2325, -0.3725, ..., -1.0903, -1.0203, 2.4286],
[-0.3901, -0.2325, -0.4251, ..., -1.2304, -1.2304, 2.4111],
[-0.4076, -0.2850, -0.4776, ..., -1.2829, -1.2829, 2.3410]],
[[-0.6715, -0.9853, -0.8807, ..., -0.9678, -0.6890, 2.3960],
[-0.7238, -1.0724, -0.9678, ..., -1.2467, -1.0201, 2.3263],
[-0.8284, -1.1247, -1.0201, ..., -1.2641, -1.1596, 2.3786],
...,
[-1.2293, -1.4733, -1.3861, ..., -1.5081, -1.2641, 2.5180],
[-1.1944, -1.4559, -1.4210, ..., -1.6476, -1.4733, 2.4308],
[-1.2293, -1.5256, -1.5081, ..., -1.6824, -1.5256, 2.3611]]])
Was it really useful?
What is the shape?
What are the statistics?
Are any of the values nan
or int
?
Is it an image of a man holding a tench?
import lovely_tensors.tensors as lt
# A very short tensor
print(lt.lovely(numbers.view(-1)[:2]))
tensor[2] μ=-0.345 σ=0.012 x=[-0.354, -0.337]
# A slightly longer tensor
print(lt.lovely(numbers.view(-1)[:6].view(2,3)))
tensor[2, 3] n=6 x∈[-0.440, -0.337] μ=-0.388 σ=0.038 x=[[-0.354, -0.337, -0.405], [-0.440, -0.388, -0.405]]
t = numbers.view(-1)[:12].clone()
t[0] *= 10000
t[1] /= 10000
t[2] = float('inf')
t[3] = float('-inf')
t[4] = float('nan')
t = t.reshape((2,6))
print(t)
print("\n")
# A spicy tensor
print(lt.lovely(t))
# A zero tensor
print(lt.lovely(torch.zeros(10, 10)))
tensor([[-3.5405e+03, -3.3693e-05, inf, -inf, nan, -4.0543e-01],
[-4.2255e-01, -4.9105e-01, -5.0818e-01, -5.5955e-01, -5.4243e-01, -5.0818e-01]])
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan! x=...
tensor[10, 10] all_zeros
# Too long to show values
lt.lovely(numbers)
'tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073 x=...'
Now the important queston - is it the Tenchman?
lt.show_rgb(numbers)
Maaaaybe? Looks like someone normalized him.
in_stats = { "mean": (0.485, 0.456, 0.406), "std": (0.229, 0.224, 0.225) }
lt.show_rgb(numbers, in_stats)
There can be no doubt.
One last thing - let’s monkey-patch torch.Tensor
for convenience.
lt.monkey_patch()
t
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan! x=...
t.verbose
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan!
x=[[-3.5405e+03, -3.3693e-05, inf, -inf, nan, -4.0543e-01],
[-4.2255e-01, -4.9105e-01, -5.0818e-01, -5.5955e-01, -5.4243e-01, -5.0818e-01]]
t.plain
[[-3.5405e+03, -3.3693e-05, inf, -inf, nan, -4.0543e-01],
[-4.2255e-01, -4.9105e-01, -5.0818e-01, -5.5955e-01, -5.4243e-01, -5.0818e-01]]
numbers.rgb
# The values are the same, but we de-norm before displaying.
numbers.denorm=in_stats
numbers.rgb
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
lovely-tensors-0.0.2.tar.gz
(10.8 kB
view details)
Built Distribution
File details
Details for the file lovely-tensors-0.0.2.tar.gz
.
File metadata
- Download URL: lovely-tensors-0.0.2.tar.gz
- Upload date:
- Size: 10.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a6071dc3372d328b3a341d107d67dac2800af28458373e1c566b6e61b74759c0 |
|
MD5 | f4754f493e23ff476c9fc472a6e4ebb9 |
|
BLAKE2b-256 | 1f006c8a0f3c5dab1af633d6f4d94fa5e8632e41777e3d6343d4389bb68b3f53 |
File details
Details for the file lovely_tensors-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: lovely_tensors-0.0.2-py3-none-any.whl
- Upload date:
- Size: 13.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 28211b641f3e9d4e5cc57470c57ff6b6a613ca1efd89522a446a636187f8a106 |
|
MD5 | 9f1fc556915c2239fdd2cefae85727cf |
|
BLAKE2b-256 | 4b451594f043573a4e4ce2069b01bfd24a8c2ee570c762588bb104608f36c9a5 |