Lovely Tensors
Project description
Lovely Tensors
Install
pip install lovely-tensors
How to use
How often do you find yourself debugging PyTorch code? You dump a tensor to the cell output, and see this:
numbers
tensor([[[-0.3541, -0.3369, -0.4054, ..., -0.5596, -0.4739, 2.2489],
[-0.4054, -0.4226, -0.4911, ..., -0.9192, -0.8507, 2.1633],
[-0.4739, -0.4739, -0.5424, ..., -1.0390, -1.0390, 2.1975],
...,
[-0.9020, -0.8335, -0.9363, ..., -1.4672, -1.2959, 2.2318],
[-0.8507, -0.7822, -0.9363, ..., -1.6042, -1.5014, 2.1804],
[-0.8335, -0.8164, -0.9705, ..., -1.6555, -1.5528, 2.1119]],
[[-0.1975, -0.1975, -0.3025, ..., -0.4776, -0.3725, 2.4111],
[-0.2500, -0.2325, -0.3375, ..., -0.7052, -0.6702, 2.3585],
[-0.3025, -0.2850, -0.3901, ..., -0.7402, -0.8102, 2.3761],
...,
[-0.4251, -0.2325, -0.3725, ..., -1.0903, -1.0203, 2.4286],
[-0.3901, -0.2325, -0.4251, ..., -1.2304, -1.2304, 2.4111],
[-0.4076, -0.2850, -0.4776, ..., -1.2829, -1.2829, 2.3410]],
[[-0.6715, -0.9853, -0.8807, ..., -0.9678, -0.6890, 2.3960],
[-0.7238, -1.0724, -0.9678, ..., -1.2467, -1.0201, 2.3263],
[-0.8284, -1.1247, -1.0201, ..., -1.2641, -1.1596, 2.3786],
...,
[-1.2293, -1.4733, -1.3861, ..., -1.5081, -1.2641, 2.5180],
[-1.1944, -1.4559, -1.4210, ..., -1.6476, -1.4733, 2.4308],
[-1.2293, -1.5256, -1.5081, ..., -1.6824, -1.5256, 2.3611]]])
Was it really useful?
What is the shape?
What are the statistics?
Are any of the values nan
or inf
?
Is it an image of a man holding a tench?
import lovely_tensors as lt
lt.monkey_patch()
__repr__()
# A very short tensor - no min/max
numbers.flatten()[:2]
tensor[2] μ=-0.345 σ=0.012 [-0.354, -0.337]
# A slightly longer one
numbers.flatten()[:6].view(2,3)
tensor[2, 3] n=6 x∈[-0.440, -0.337] μ=-0.388 σ=0.038 [[-0.354, -0.337, -0.405], [-0.440, -0.388, -0.405]]
# Too long to show the values
numbers
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073
spicy = numbers.flatten()[:12].clone()
spicy[0] *= 10000
spicy[1] /= 10000
spicy[2] = float('inf')
spicy[3] = float('-inf')
spicy[4] = float('nan')
spicy = spicy.reshape((2,6))
spicy
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan!
# A zero tensor
torch.zeros(10, 10)
tensor[10, 10] n=100 all_zeros
spicy.verbose
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan!
[[-3.5405e+03, -3.3693e-05, inf, -inf, nan, -4.0543e-01],
[-4.2255e-01, -4.9105e-01, -5.0818e-01, -5.5955e-01, -5.4243e-01, -5.0818e-01]]
spicy.plain
[[-3.5405e+03, -3.3693e-05, inf, -inf, nan, -4.0543e-01],
[-4.2255e-01, -4.9105e-01, -5.0818e-01, -5.5955e-01, -5.4243e-01, -5.0818e-01]]
Going .deeper
numbers.deeper
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073
tensor[196, 196] n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
tensor[196, 196] n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
tensor[196, 196] n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
# You can go deeper if you need to
dt = torch.randn(3, 3, 5)
dt.deeper(2)
tensor[3, 3, 5] n=45 x∈[-2.057, 2.357] μ=-0.182 σ=1.114
tensor[3, 5] n=15 x∈[-2.057, 1.315] μ=-0.299 σ=1.197
tensor[5] x∈[-1.703, 0.807] μ=-0.953 σ=1.061 [-1.703, -1.634, -1.519, -0.713, 0.807]
tensor[5] x∈[-2.057, 1.287] μ=-0.448 σ=1.338 [1.287, -0.517, -1.358, -2.057, 0.408]
tensor[5] x∈[-0.884, 1.315] μ=0.503 σ=0.857 [-0.884, 1.315, 0.296, 0.832, 0.955]
tensor[3, 5] n=15 x∈[-1.947, 2.357] μ=-0.151 σ=1.211
tensor[5] x∈[-1.947, 2.357] μ=-0.070 σ=1.747 [2.357, -1.947, -1.072, -0.766, 1.076]
tensor[5] x∈[-1.502, 0.792] μ=-0.253 σ=0.842 [-1.502, -0.065, -0.516, 0.027, 0.792]
tensor[5] x∈[-1.080, 1.276] μ=-0.130 σ=1.160 [-1.080, -1.056, 1.276, -0.773, 0.981]
tensor[3, 5] n=15 x∈[-1.614, 1.811] μ=-0.095 σ=0.989
tensor[5] x∈[-1.614, 0.926] μ=-0.646 σ=1.048 [-1.614, 0.926, -1.299, -1.150, -0.093]
tensor[5] x∈[-0.600, 1.811] μ=0.484 σ=0.861 [0.357, 1.811, -0.600, 0.483, 0.368]
tensor[5] x∈[-1.047, 1.235] μ=-0.124 σ=0.886 [1.235, -1.047, -0.634, -0.386, 0.213]
Now in .rgb
colour
The important queston - is it our man?
numbers.rgb
Maaaaybe? Looks like someone normalized him.
in_stats = { "mean": (0.485, 0.456, 0.406),
"std": (0.229, 0.224, 0.225) }
numbers.rgb(in_stats)
It’s indeed our hero, the Tenchman!
.plt
the statistics
(numbers+3).plt
(numbers+3).plt(center="mean")
(numbers+3).plt(center="range")
Without .monkey_patch
lt.lovely(spicy)
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan!
lt.lovely(spicy, verbose=True)
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan!
[[-3.5405e+03, -3.3693e-05, inf, -inf, nan, -4.0543e-01],
[-4.2255e-01, -4.9105e-01, -5.0818e-01, -5.5955e-01, -5.4243e-01, -5.0818e-01]]
lt.lovely(numbers, depth=1)
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073
tensor[196, 196] n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
tensor[196, 196] n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
tensor[196, 196] n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
lt.rgb(numbers, in_stats)
lt.plot(numbers, center="mean")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
lovely-tensors-0.0.7.tar.gz
(17.1 kB
view details)
Built Distribution
File details
Details for the file lovely-tensors-0.0.7.tar.gz
.
File metadata
- Download URL: lovely-tensors-0.0.7.tar.gz
- Upload date:
- Size: 17.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 438937dfbc63c77f90ea24683e8d8a8b65b232d16aa316caa93cfe336faba4f2 |
|
MD5 | c2df2b0bc0e340ac028f52cac4cc647b |
|
BLAKE2b-256 | d4d00edc29b4febbd90d5b95e1de5962650772e9388c0a00fdd8a4156cb859be |
File details
Details for the file lovely_tensors-0.0.7-py3-none-any.whl
.
File metadata
- Download URL: lovely_tensors-0.0.7-py3-none-any.whl
- Upload date:
- Size: 24.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 41295034550c0970d9e76a6ca08d0d7053375cafa11aa55a7c734f30c5c7cdeb |
|
MD5 | 7dfa5914091ff238c1b504df3c68d068 |
|
BLAKE2b-256 | c10410a3db9b795c12c94e62e1151f57655270fd22da0552922f6f8c6de3f76b |