Skip to main content

Lovely Tensors

Project description

Lovely Tensors

Install

pip install lovely-tensors

How to use

How often do you find yourself debugging PyTorch code? You dump a tensor to the cell output, and see this:

numbers
tensor([[[-0.3541, -0.3369, -0.4054,  ..., -0.5596, -0.4739,  2.2489],
         [-0.4054, -0.4226, -0.4911,  ..., -0.9192, -0.8507,  2.1633],
         [-0.4739, -0.4739, -0.5424,  ..., -1.0390, -1.0390,  2.1975],
         ...,
         [-0.9020, -0.8335, -0.9363,  ..., -1.4672, -1.2959,  2.2318],
         [-0.8507, -0.7822, -0.9363,  ..., -1.6042, -1.5014,  2.1804],
         [-0.8335, -0.8164, -0.9705,  ..., -1.6555, -1.5528,  2.1119]],

        [[-0.1975, -0.1975, -0.3025,  ..., -0.4776, -0.3725,  2.4111],
         [-0.2500, -0.2325, -0.3375,  ..., -0.7052, -0.6702,  2.3585],
         [-0.3025, -0.2850, -0.3901,  ..., -0.7402, -0.8102,  2.3761],
         ...,
         [-0.4251, -0.2325, -0.3725,  ..., -1.0903, -1.0203,  2.4286],
         [-0.3901, -0.2325, -0.4251,  ..., -1.2304, -1.2304,  2.4111],
         [-0.4076, -0.2850, -0.4776,  ..., -1.2829, -1.2829,  2.3410]],

        [[-0.6715, -0.9853, -0.8807,  ..., -0.9678, -0.6890,  2.3960],
         [-0.7238, -1.0724, -0.9678,  ..., -1.2467, -1.0201,  2.3263],
         [-0.8284, -1.1247, -1.0201,  ..., -1.2641, -1.1596,  2.3786],
         ...,
         [-1.2293, -1.4733, -1.3861,  ..., -1.5081, -1.2641,  2.5180],
         [-1.1944, -1.4559, -1.4210,  ..., -1.6476, -1.4733,  2.4308],
         [-1.2293, -1.5256, -1.5081,  ..., -1.6824, -1.5256,  2.3611]]])

Was it really useful?

What is the shape?
What are the statistics?
Are any of the values nan or inf?
Is it an image of a man holding a tench?

import lovely_tensors as lt
lt.monkey_patch()

__repr__()

# A very short tensor - no min/max
numbers.flatten()[:2]
tensor[2] μ=-0.345 σ=0.012 [-0.354, -0.337]
# A slightly longer one
numbers.flatten()[:6].view(2,3)
tensor[2, 3] n=6 x∈[-0.440, -0.337] μ=-0.388 σ=0.038 [[-0.354, -0.337, -0.405], [-0.440, -0.388, -0.405]]
# Too long to show the values
numbers
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073
spicy = numbers.flatten()[:12].clone()

spicy[0] *= 10000
spicy[1] /= 10000
spicy[2] = float('inf')
spicy[3] = float('-inf')
spicy[4] = float('nan')

spicy = spicy.reshape((2,6))
spicy
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan!
# A zero tensor
torch.zeros(10, 10)
tensor[10, 10] n=100 all_zeros
spicy.verbose
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan!
[[-3.5405e+03, -3.3693e-05,         inf,        -inf,         nan, -4.0543e-01],
 [-4.2255e-01, -4.9105e-01, -5.0818e-01, -5.5955e-01, -5.4243e-01, -5.0818e-01]]
spicy.plain
[[-3.5405e+03, -3.3693e-05,         inf,        -inf,         nan, -4.0543e-01],
 [-4.2255e-01, -4.9105e-01, -5.0818e-01, -5.5955e-01, -5.4243e-01, -5.0818e-01]]

Going .deeper

numbers.deeper
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073
  tensor[196, 196] n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
  tensor[196, 196] n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
  tensor[196, 196] n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
# You can go deeper if you need to
dt = torch.randn(3, 3, 5)
dt.deeper(2)
tensor[3, 3, 5] n=45 x∈[-2.490, 2.484] μ=-0.060 σ=0.884
  tensor[3, 5] n=15 x∈[-2.490, 0.421] μ=-0.770 σ=0.789
    tensor[5] x∈[-2.490, 0.421] μ=-1.063 σ=1.035 [-1.048, -2.490, -1.236, 0.421, -0.961]
    tensor[5] x∈[-0.322, 0.400] μ=-0.097 σ=0.307 [-0.322, -0.271, 0.400, 0.002, -0.295]
    tensor[5] x∈[-1.683, -0.716] μ=-1.151 σ=0.400 [-1.298, -1.683, -1.270, -0.716, -0.789]
  tensor[3, 5] n=15 x∈[-0.740, 2.484] μ=0.333 σ=0.841
    tensor[5] x∈[-0.651, 2.484] μ=0.464 σ=1.196 [-0.651, -0.124, 0.332, 0.278, 2.484]
    tensor[5] x∈[-0.740, 1.300] μ=0.309 σ=0.743 [-0.740, 1.300, 0.583, 0.318, 0.081]
    tensor[5] x∈[-0.512, 1.067] μ=0.227 σ=0.675 [0.794, -0.223, -0.512, 1.067, 0.008]
  tensor[3, 5] n=15 x∈[-0.364, 1.862] μ=0.258 σ=0.561
    tensor[5] x∈[-0.364, 0.676] μ=0.108 σ=0.388 [0.676, 0.020, 0.262, -0.364, -0.053]
    tensor[5] x∈[-0.218, 0.858] μ=0.271 σ=0.471 [0.651, 0.180, -0.117, -0.218, 0.858]
    tensor[5] x∈[-0.053, 1.862] μ=0.395 σ=0.822 [1.862, -0.053, 0.003, 0.096, 0.066]

Now in .rgb colour

The important queston - is it our man?

numbers.rgb

Maaaaybe? Looks like someone normalized him.

in_stats = { "mean": (0.485, 0.456, 0.406),
             "std": (0.229, 0.224, 0.225) }
numbers.rgb(in_stats)

It’s indeed our hero, the Tenchman!

.plt the statistics

(numbers+3).plt

(numbers+3).plt(center="mean", max_s=1000)

(numbers+3).plt(center="range")

Without .monkey_patch

lt.lovely(spicy)
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan!
lt.lovely(spicy, verbose=True)
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan!
[[-3.5405e+03, -3.3693e-05,         inf,        -inf,         nan, -4.0543e-01],
 [-4.2255e-01, -4.9105e-01, -5.0818e-01, -5.5955e-01, -5.4243e-01, -5.0818e-01]]
lt.lovely(numbers, depth=1)
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073
  tensor[196, 196] n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
  tensor[196, 196] n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
  tensor[196, 196] n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
lt.rgb(numbers, in_stats)

lt.plot(numbers, center="mean")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lovely-tensors-0.0.8.tar.gz (17.2 kB view details)

Uploaded Source

Built Distribution

lovely_tensors-0.0.8-py3-none-any.whl (24.0 kB view details)

Uploaded Python 3

File details

Details for the file lovely-tensors-0.0.8.tar.gz.

File metadata

  • Download URL: lovely-tensors-0.0.8.tar.gz
  • Upload date:
  • Size: 17.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for lovely-tensors-0.0.8.tar.gz
Algorithm Hash digest
SHA256 8ba1ed6faf4d7c19e77561f0094c3254d513a256b7474169b22afc64f9eaafbd
MD5 dc442b962500cb2b90264c688f0ee002
BLAKE2b-256 443d9560e09c049afe9b489870c92f7d4a21a193220df0d590276cf6229f0a03

See more details on using hashes here.

File details

Details for the file lovely_tensors-0.0.8-py3-none-any.whl.

File metadata

File hashes

Hashes for lovely_tensors-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 9df2b7e5a972850ed1b0e494a56a698196b027d557ceac36a296b62a285e2c10
MD5 e1cd51cf81a421a0ded992268fd140ed
BLAKE2b-256 64d9893889079c89acf26034ef704ecc647d5334d733f65b89d449f6f216c286

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page