Skip to main content

Lovely Tensors

Project description

Lovely Tensors

Install

pip install lovely-tensors

How to use

How often do you find yourself debugging PyTorch code? You dump a tensor to the cell output, and see this:

numbers
tensor([[[-0.3541, -0.3369, -0.4054,  ..., -0.5596, -0.4739,  2.2489],
         [-0.4054, -0.4226, -0.4911,  ..., -0.9192, -0.8507,  2.1633],
         [-0.4739, -0.4739, -0.5424,  ..., -1.0390, -1.0390,  2.1975],
         ...,
         [-0.9020, -0.8335, -0.9363,  ..., -1.4672, -1.2959,  2.2318],
         [-0.8507, -0.7822, -0.9363,  ..., -1.6042, -1.5014,  2.1804],
         [-0.8335, -0.8164, -0.9705,  ..., -1.6555, -1.5528,  2.1119]],

        [[-0.1975, -0.1975, -0.3025,  ..., -0.4776, -0.3725,  2.4111],
         [-0.2500, -0.2325, -0.3375,  ..., -0.7052, -0.6702,  2.3585],
         [-0.3025, -0.2850, -0.3901,  ..., -0.7402, -0.8102,  2.3761],
         ...,
         [-0.4251, -0.2325, -0.3725,  ..., -1.0903, -1.0203,  2.4286],
         [-0.3901, -0.2325, -0.4251,  ..., -1.2304, -1.2304,  2.4111],
         [-0.4076, -0.2850, -0.4776,  ..., -1.2829, -1.2829,  2.3410]],

        [[-0.6715, -0.9853, -0.8807,  ..., -0.9678, -0.6890,  2.3960],
         [-0.7238, -1.0724, -0.9678,  ..., -1.2467, -1.0201,  2.3263],
         [-0.8284, -1.1247, -1.0201,  ..., -1.2641, -1.1596,  2.3786],
         ...,
         [-1.2293, -1.4733, -1.3861,  ..., -1.5081, -1.2641,  2.5180],
         [-1.1944, -1.4559, -1.4210,  ..., -1.6476, -1.4733,  2.4308],
         [-1.2293, -1.5256, -1.5081,  ..., -1.6824, -1.5256,  2.3611]]])

Was it really useful?

What is the shape?
What are the statistics?
Are any of the values nan or inf?
Is it an image of a man holding a tench?

import lovely_tensors as lt
lt.monkey_patch()

__repr__()

# A very short tensor - no min/max
numbers.flatten()[:2]
tensor[2] μ=-0.345 σ=0.012 [-0.354, -0.337]
# A slightly longer one
numbers.flatten()[:6].view(2,3)
tensor[2, 3] n=6 x∈[-0.440, -0.337] μ=-0.388 σ=0.038 [[-0.354, -0.337, -0.405], [-0.440, -0.388, -0.405]]
# Too long to show the values
numbers
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073
spicy = numbers.flatten()[:12].clone()

spicy[0] *= 10000
spicy[1] /= 10000
spicy[2] = float('inf')
spicy[3] = float('-inf')
spicy[4] = float('nan')

spicy = spicy.reshape((2,6))
spicy
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan!
# A zero tensor
torch.zeros(10, 10)
tensor[10, 10] n=100 all_zeros
spicy.verbose
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan!
[[-3.5405e+03, -3.3693e-05,         inf,        -inf,         nan, -4.0543e-01],
 [-4.2255e-01, -4.9105e-01, -5.0818e-01, -5.5955e-01, -5.4243e-01, -5.0818e-01]]
spicy.plain
[[-3.5405e+03, -3.3693e-05,         inf,        -inf,         nan, -4.0543e-01],
 [-4.2255e-01, -4.9105e-01, -5.0818e-01, -5.5955e-01, -5.4243e-01, -5.0818e-01]]

Going .deeper

numbers.deeper
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073
  tensor[196, 196] n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
  tensor[196, 196] n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
  tensor[196, 196] n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
# You can go deeper if you need to
dt = torch.randn(3, 3, 5)
dt.deeper(2)
tensor[3, 3, 5] n=45 x∈[-2.490, 2.484] μ=-0.060 σ=0.884
  tensor[3, 5] n=15 x∈[-2.490, 0.421] μ=-0.770 σ=0.789
    tensor[5] x∈[-2.490, 0.421] μ=-1.063 σ=1.035 [-1.048, -2.490, -1.236, 0.421, -0.961]
    tensor[5] x∈[-0.322, 0.400] μ=-0.097 σ=0.307 [-0.322, -0.271, 0.400, 0.002, -0.295]
    tensor[5] x∈[-1.683, -0.716] μ=-1.151 σ=0.400 [-1.298, -1.683, -1.270, -0.716, -0.789]
  tensor[3, 5] n=15 x∈[-0.740, 2.484] μ=0.333 σ=0.841
    tensor[5] x∈[-0.651, 2.484] μ=0.464 σ=1.196 [-0.651, -0.124, 0.332, 0.278, 2.484]
    tensor[5] x∈[-0.740, 1.300] μ=0.309 σ=0.743 [-0.740, 1.300, 0.583, 0.318, 0.081]
    tensor[5] x∈[-0.512, 1.067] μ=0.227 σ=0.675 [0.794, -0.223, -0.512, 1.067, 0.008]
  tensor[3, 5] n=15 x∈[-0.364, 1.862] μ=0.258 σ=0.561
    tensor[5] x∈[-0.364, 0.676] μ=0.108 σ=0.388 [0.676, 0.020, 0.262, -0.364, -0.053]
    tensor[5] x∈[-0.218, 0.858] μ=0.271 σ=0.471 [0.651, 0.180, -0.117, -0.218, 0.858]
    tensor[5] x∈[-0.053, 1.862] μ=0.395 σ=0.822 [1.862, -0.053, 0.003, 0.096, 0.066]

Now in .rgb colour

The important queston - is it our man?

numbers.rgb

Maaaaybe? Looks like someone normalized him.

in_stats = { "mean": (0.485, 0.456, 0.406),
             "std": (0.229, 0.224, 0.225) }
numbers.rgb(in_stats)

It’s indeed our hero, the Tenchman!

.plt the statistics

(numbers+3).plt

(numbers+3).plt(center="mean", max_s=1000)

(numbers+3).plt(center="range")

Without .monkey_patch

lt.lovely(spicy)
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan!
lt.lovely(spicy, verbose=True)
tensor[2, 6] n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.180e+03 +inf! -inf! nan!
[[-3.5405e+03, -3.3693e-05,         inf,        -inf,         nan, -4.0543e-01],
 [-4.2255e-01, -4.9105e-01, -5.0818e-01, -5.5955e-01, -5.4243e-01, -5.0818e-01]]
lt.lovely(numbers, depth=1)
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073
  tensor[196, 196] n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
  tensor[196, 196] n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
  tensor[196, 196] n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
lt.rgb(numbers, in_stats)

lt.plot(numbers, center="mean")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lovely-tensors-0.0.9.tar.gz (17.2 kB view details)

Uploaded Source

Built Distribution

lovely_tensors-0.0.9-py3-none-any.whl (24.0 kB view details)

Uploaded Python 3

File details

Details for the file lovely-tensors-0.0.9.tar.gz.

File metadata

  • Download URL: lovely-tensors-0.0.9.tar.gz
  • Upload date:
  • Size: 17.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for lovely-tensors-0.0.9.tar.gz
Algorithm Hash digest
SHA256 31c4a7598f5323b5b913f88d8d74e260d0a2eddc890c9d30783a7de57439fc87
MD5 7ce742994d9aac079969b0b2d0b36c42
BLAKE2b-256 7556bc2d6bc5c083a26b7538010d7c2aa84fee73a3bceb94d5ddfce38ca6d79e

See more details on using hashes here.

File details

Details for the file lovely_tensors-0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for lovely_tensors-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 86e2be7874da4a44a4c2cb8eaf8968a28ef90bc35479504adae178a2e4bf43dd
MD5 9d2bbb8bacd9e333a2d58f8ab267e54c
BLAKE2b-256 aa70c3c0d20746e76f556bd9eba64c7507c26f17f612370a1e69fb368a9a2828

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page