Skip to main content

❤️ Lovely Tensors

Project description

❤️ Lovely Tensors

Install

pip install lovely-tensors

How to use

How often do you find yourself debugging PyTorch code? You dump a tensor to the cell output, and see this:

numbers
tensor([[[-0.3541, -0.3369, -0.4054,  ..., -0.5596, -0.4739,  2.2489],
         [-0.4054, -0.4226, -0.4911,  ..., -0.9192, -0.8507,  2.1633],
         [-0.4739, -0.4739, -0.5424,  ..., -1.0390, -1.0390,  2.1975],
         ...,
         [-0.9020, -0.8335, -0.9363,  ..., -1.4672, -1.2959,  2.2318],
         [-0.8507, -0.7822, -0.9363,  ..., -1.6042, -1.5014,  2.1804],
         [-0.8335, -0.8164, -0.9705,  ..., -1.6555, -1.5528,  2.1119]],

        [[-0.1975, -0.1975, -0.3025,  ..., -0.4776, -0.3725,  2.4111],
         [-0.2500, -0.2325, -0.3375,  ..., -0.7052, -0.6702,  2.3585],
         [-0.3025, -0.2850, -0.3901,  ..., -0.7402, -0.8102,  2.3761],
         ...,
         [-0.4251, -0.2325, -0.3725,  ..., -1.0903, -1.0203,  2.4286],
         [-0.3901, -0.2325, -0.4251,  ..., -1.2304, -1.2304,  2.4111],
         [-0.4076, -0.2850, -0.4776,  ..., -1.2829, -1.2829,  2.3410]],

        [[-0.6715, -0.9853, -0.8807,  ..., -0.9678, -0.6890,  2.3960],
         [-0.7238, -1.0724, -0.9678,  ..., -1.2467, -1.0201,  2.3263],
         [-0.8284, -1.1247, -1.0201,  ..., -1.2641, -1.1596,  2.3786],
         ...,
         [-1.2293, -1.4733, -1.3861,  ..., -1.5081, -1.2641,  2.5180],
         [-1.1944, -1.4559, -1.4210,  ..., -1.6476, -1.4733,  2.4308],
         [-1.2293, -1.5256, -1.5081,  ..., -1.6824, -1.5256,  2.3611]]])

Was it really useful for you, as a human, to see all these numbers?

What is the shape? The size?
What are the statistics?
Are any of the values nan or inf?
Is it an image of a man holding a tench?

import lovely_tensors as lt
lt.monkey_patch()

Summary

numbers # torch.Tensor
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073

Better, huh?

numbers[1,:6,1] # Still shows values if there are not too many.
tensor[6] x∈[-0.443, -0.197] μ=-0.311 σ=0.091 [-0.197, -0.232, -0.285, -0.373, -0.443, -0.338]
spicy = numbers[0,:12,0].clone()

spicy[0] *= 10000
spicy[1] /= 10000
spicy[2] = float('inf')
spicy[3] = float('-inf')
spicy[4] = float('nan')

spicy = spicy.reshape((2,6))
spicy # Spicy stuff
tensor[2, 6] n=12 x∈[-3.541e+03, -4.054e-05] μ=-393.842 σ=1.180e+03 +Inf! -Inf! NaN!
torch.zeros(10, 10) # A zero tensor - make it obvious
tensor[10, 10] all_zeros
spicy.v # Verbose
tensor[2, 6] n=12 x∈[-3.541e+03, -4.054e-05] μ=-393.842 σ=1.180e+03 +Inf! -Inf! NaN!
tensor([[-3.5405e+03, -4.0543e-05,         inf,        -inf,         nan, -6.1093e-01],
        [-6.1093e-01, -5.9380e-01, -5.9380e-01, -5.4243e-01, -5.4243e-01, -5.4243e-01]])
spicy.p # The plain old way
tensor([[-3.5405e+03, -4.0543e-05,         inf,        -inf,         nan, -6.1093e-01],
        [-6.1093e-01, -5.9380e-01, -5.9380e-01, -5.4243e-01, -5.4243e-01, -5.4243e-01]])

Going .deeper

numbers.deeper
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073
  tensor[196, 196] n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
  tensor[196, 196] n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
  tensor[196, 196] n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
# You can go deeper if you need to
numbers[:,:3,:5].deeper(2)
tensor[3, 3, 5] n=45 x∈[-1.316, -0.197] μ=-0.593 σ=0.306
  tensor[3, 5] n=15 x∈[-0.765, -0.337] μ=-0.492 σ=0.124
    tensor[5] x∈[-0.440, -0.337] μ=-0.385 σ=0.041 [-0.354, -0.337, -0.405, -0.440, -0.388]
    tensor[5] x∈[-0.662, -0.405] μ=-0.512 σ=0.108 [-0.405, -0.423, -0.491, -0.577, -0.662]
    tensor[5] x∈[-0.765, -0.474] μ=-0.580 σ=0.125 [-0.474, -0.474, -0.542, -0.645, -0.765]
  tensor[3, 5] n=15 x∈[-0.513, -0.197] μ=-0.321 σ=0.099
    tensor[5] x∈[-0.303, -0.197] μ=-0.243 σ=0.055 [-0.197, -0.197, -0.303, -0.303, -0.215]
    tensor[5] x∈[-0.408, -0.232] μ=-0.327 σ=0.084 [-0.250, -0.232, -0.338, -0.408, -0.408]
    tensor[5] x∈[-0.513, -0.285] μ=-0.394 σ=0.102 [-0.303, -0.285, -0.390, -0.478, -0.513]
  tensor[3, 5] n=15 x∈[-1.316, -0.672] μ=-0.964 σ=0.176
    tensor[5] x∈[-0.985, -0.672] μ=-0.846 σ=0.123 [-0.672, -0.985, -0.881, -0.776, -0.916]
    tensor[5] x∈[-1.212, -0.724] μ=-0.989 σ=0.179 [-0.724, -1.072, -0.968, -0.968, -1.212]
    tensor[5] x∈[-1.316, -0.828] μ=-1.058 σ=0.179 [-0.828, -1.125, -1.020, -1.003, -1.316]

Now in .rgb color

The important queston - is it our man?

numbers.rgb

Maaaaybe? Looks like someone normalized him.

in_stats = ( (0.485, 0.456, 0.406),     # mean 
             (0.229, 0.224, 0.225) )    # std

# numbers.rgb(in_stats, cl=True) # For channel-last input format
numbers.rgb(in_stats)

It’s indeed our hero, the Tenchman!

.plt the statistics

(numbers+3).plt

(numbers+3).plt(center="mean", max_s=1000)

(numbers+3).plt(center="range")

See the .chans

# .chans will map values betwen [0,1] to colors.
# Make our values fit into that range to avoid clipping.
mean = torch.tensor(in_stats[0])[:,None,None]
std = torch.tensor(in_stats[1])[:,None,None]
numbers_01 = (numbers*std + mean)
numbers_01
tensor[3, 196, 196] n=115248 x∈[0., 1.000] μ=0.361 σ=0.248
numbers_01.chans

Let’s try with a Convolutional Neural Network

from torchvision.models import vgg11
features: torch.nn.Sequential = vgg11().features

# I saved the first 5 layers in "features.pt"
_ = features.load_state_dict(torch.load("../features.pt"), strict=False)
# Activatons of the second max pool layer of VGG11
acts = (features[:6](numbers[None])[0]/2) # /2 to reduce clipping
acts
tensor[128, 49, 49] n=307328 x∈[0., 12.508] μ=0.367 σ=0.634 grad DivBackward0
acts.chans

Grouping

# Make 8 images with progressively higher brightness and stack them 2x2x2.
eight_images = (torch.stack([numbers]*8)
                    .add(torch.linspace(-3, 3, 8)[:,None,None,None])
                    .mul(torch.tensor(in_stats[1])[:,None,None])
                    .add(torch.tensor(in_stats[0])[:,None,None])
                    .clamp(0,1)
                    .view(2,2,2,3,196,196)
)
eight_images
tensor[2, 2, 2, 3, 196, 196] n=921984 x∈[0., 1.000] μ=0.411 σ=0.369
eight_images.rgb

# Weights of the second conv layer of VGG11
features[3].weight
Parameter containing:
Parameter[128, 64, 3, 3] n=73728 x∈[-0.783, 0.776] μ=-0.004 σ=0.065 grad

Quick and dirty normalization. I want +/- 2σ to fall in the range [0..1]

weights = features[3].weight.data
weights = weights / (2*2*weights.std()) # *2 because we want 2σ on both sides, so 4σ
weights += weights.std() * 2
weights.plt

# Weights of the second conv layer (64ch -> 128ch) of VGG11,
# grouped per output channel.
weights.chans(frame_px=1, gutter_px=0)

It’s a bit hard to see. Scale up 10x, but onyl show the first 4 filters.

weights[:4].chans(frame_px=1, gutter_px=0, scale=10)

Without .monkey_patch

lt.lovely(spicy)
tensor[2, 6] n=12 x∈[-3.541e+03, -4.054e-05] μ=-393.842 σ=1.180e+03 +Inf! -Inf! NaN!
lt.lovely(spicy, verbose=True)
tensor[2, 6] n=12 x∈[-3.541e+03, -4.054e-05] μ=-393.842 σ=1.180e+03 +Inf! -Inf! NaN!
tensor([[-3.5405e+03, -4.0543e-05,         inf,        -inf,         nan, -6.1093e-01],
        [-6.1093e-01, -5.9380e-01, -5.9380e-01, -5.4243e-01, -5.4243e-01, -5.4243e-01]])
lt.lovely(numbers, depth=1)
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073
  tensor[196, 196] n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
  tensor[196, 196] n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
  tensor[196, 196] n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
lt.rgb(numbers, in_stats)

lt.plot(numbers, center="mean")

lt.chans(numbers_01)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lovely-tensors-0.1.9.tar.gz (6.8 MB view details)

Uploaded Source

Built Distribution

lovely_tensors-0.1.9-py3-none-any.whl (16.4 kB view details)

Uploaded Python 3

File details

Details for the file lovely-tensors-0.1.9.tar.gz.

File metadata

  • Download URL: lovely-tensors-0.1.9.tar.gz
  • Upload date:
  • Size: 6.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for lovely-tensors-0.1.9.tar.gz
Algorithm Hash digest
SHA256 4b6782d778f6d93142d24f3146de06099de7f1ae8fe09555887a47fa4ee10f8b
MD5 993f88d19c0fd93dcdcbf08c28b33bec
BLAKE2b-256 7d8ae388f81ec2a0de3375c9483a0c6be00f8ba9458b4a6efe095686e57dc703

See more details on using hashes here.

File details

Details for the file lovely_tensors-0.1.9-py3-none-any.whl.

File metadata

File hashes

Hashes for lovely_tensors-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 e89c4a8eff81c4a415dc35ec8b0c356e5379190823cf4ff384bfc24d383823a6
MD5 4dadcafa13a45ebe8a2e9480f4e17384
BLAKE2b-256 824e3752c464d3d89e036b38eedb75557e8f660b21d6c899870bcc4538ed13c1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page