Tools for the simulation of x-ray diffraction.
Project description
Line Profile Analysis - X-Ray Diffraction
This project is related to the analysis of crystals containing dislocations by X-ray diffraction. It was developed and used for a study conducted during a research internship at the laboratory of material and structural sciences of the École Nationale Supérieure des Mines de Saint-Étienne. This repository contains the distribution of one of the three published python packages that have been proposed to conduct line profile analyses based on simulation results:
lpa-input
(line profile analysis input generator)lpa-xrd
(line profile analysis x-ray diffraction simulation program)lpa-output
(line profile analysis output analyzer)
The repository lpa-workspace
contains the parameters and the scripts for the generation of the data used in the study. You can then easily replicate the results obtained or use it as inspiration to take the code in hand and conduct your own calculations. The software is placed in the public domain and you can use it as you wish. However, users are encouraged to contribute to the development and report issues.
Features
The package lpa.xrd
can be used to:
- make a local copy of the X-ray diffraction simulator code
- automate the tasks of compilations and executions
Installation
The package is indexed on PyPI and installable directly via pip:
pip install -U lpa-xrd
Examples
Output data files
1.0.0 # v: lpa-xrd version
5.00e+13 # d: dislocation density [m^-2]
1 1 0 # z: direction of 'l' (line vector) [uvw]
1 1 0 # b: Burgers vector direction [uvw]
2 0 0 # g: diffraction vector direction (hkl)
0.250000 # C: contrast coefficient [1]
0.404600 # a: cell parameter [nm]
3200 # s: side of the region of interest [nm]
0.345000 # nu: Poisson's number [1]
4608 # nd: number of dislocations in the input file
200000 # np: number of random points
# L cos1 err_cos1 sin1 err_sin1 cos2 err_cos2 sin2 err_sin2 cos3 err_cos3 sin3 err_sin3 cos4 err_cos4 sin4 err_sin4 cos5 err_cos5 sin5 err_sin5 eps2 nrpo
5.0 9.919780130050152E-01 9.7694405E-05 4.649751351202615E-02 2.4401673E-04 9.718584161805875E-01 1.8592315E-04 9.122464362090398E-02 4.4864260E-04 9.416076235866173E-01 2.8748026E-04 1.329066527551777E-01 6.2921540E-04 9.028444599229754E-01 3.9678622E-04 1.709151124821277E-01 7.8794931E-04 8.573342759258576E-01 5.0992929E-04 2.044546944647581E-01 9.2512636E-04 2.845523399565078E-05 0
10.0 9.710121708440832E-01 2.0278255E-04 9.116575916950630E-02 4.5055666E-04 9.021774943746688E-01 4.0288039E-04 1.707146134209013E-01 7.8889338E-04 8.056001607624746E-01 6.3151908E-04 2.328566641373228E-01 1.0416918E-03 6.927731828272842E-01 8.5946732E-04 2.748280712141710E-01 1.2181959E-03 5.742201959831477E-01 1.0648126E-03 2.962318625026029E-01 1.3337083E-03 2.617600870330373E-05 0
15.0 9.395445834614645E-01 3.1299194E-04 1.327871325064340E-01 6.3257909E-04 8.046734338889502E-01 6.3674889E-04 2.326487626980035E-01 1.0423216E-03 6.327588009897309E-01 9.6786160E-04 2.874622559208860E-01 1.2838090E-03 4.571775204982404E-01 1.2389300E-03 2.983695306858330E-01 1.4053084E-03 3.005082344656380E-01 1.4261736E-03 2.740638215115847E-01 1.4625214E-03 2.481141516583650E-05 0
20.0 8.993436301724801E-01 4.2723083E-04 1.704071187402802E-01 7.9258445E-04 6.906480375231716E-01 8.6683762E-04 2.737961837849355E-01 1.2201674E-03 4.559003177641861E-01 1.2406425E-03 2.975801405205130E-01 1.4067085E-03 2.545509049349202E-01 1.4701520E-03 2.599099636430895E-01 1.4754416E-03 1.129192720943877E-01 1.5695090E-03 1.897256354854598E-01 1.5142432E-03 2.373505031216241E-05 0
25.0 8.516614476030940E-01 5.4780190E-04 2.033546680843503E-01 9.3086906E-04 5.706886117215826E-01 1.0738353E-03 2.942115140982540E-01 1.3362870E-03 2.987234196066947E-01 1.4270872E-03 2.729380237755982E-01 1.4645098E-03 1.126175894290291E-01 1.5691999E-03 1.896567626737299E-01 1.5147189E-03 1.891169892405472E-02 1.5817794E-03 9.567064471795843E-02 1.5653900E-03 2.304178934627635E-05 0
30.0 7.985247260772457E-01 6.6747584E-04 2.311286397025575E-01 1.0484144E-03 4.534921843382094E-01 1.2452935E-03 2.958800622688820E-01 1.4082830E-03 1.742423031865108E-01 1.5340841E-03 2.259746945032075E-01 1.4964907E-03 3.160954643341109E-02 1.5843732E-03 1.135856338875382E-01 1.5557255E-03 -6.130215023255015E-03 1.5650907E-03 2.531599523454267E-02 1.5959710E-03 2.244421905092251E-05 0
35.0 7.410752464481675E-01 7.8651089E-04 2.534921772801799E-01 1.1463665E-03 3.458235540618880E-01 1.3782516E-03 2.821306910401114E-01 1.4506841E-03 8.595612424579292E-02 1.5784296E-03 1.693521980523827E-01 1.5258575E-03 -9.849516565701470E-04 1.5698693E-03 4.926418775735411E-02 1.5885199E-03 2.294348308628428E-04 1.5724518E-03 -1.084062333821490E-02 1.5896014E-03 2.195849122361079E-05 0
40.0 6.815209458298868E-01 8.9840727E-04 2.703528545906205E-01 1.2268124E-03 2.517942315088739E-01 1.4736698E-03 2.568075447362318E-01 1.4770128E-03 3.076184110428900E-02 1.5843507E-03 1.121636192027453E-01 1.5563492E-03 -4.522635176754295E-03 1.5664373E-03 6.521320715162537E-03 1.5956141E-03 1.045383752828092E-02 1.5808535E-03 -1.840794717875087E-02 1.5807234E-03 2.150926463836787E-05 0
45.0 6.205081267878839E-01 1.0036404E-03 2.819421287855753E-01 1.2923277E-03 1.729762404668073E-01 1.5364053E-03 2.236241440863359E-01 1.4966092E-03 3.202768282748670E-03 1.5736270E-03 6.235483267653156E-02 1.5824763E-03 4.053287403694522E-03 1.5747902E-03 -1.438970403956044E-02 1.5871179E-03 1.079189490770739E-02 1.5767568E-03 -1.108314471022998E-02 1.5851392E-03 2.113891121012931E-05 0
50.0 5.594670074739783E-01 1.1005490E-03 2.886193711632470E-01 1.3443529E-03 1.104874688401281E-01 1.5706706E-03 1.858408505746260E-01 1.5163431E-03 -5.179008050301716E-03 1.5663271E-03 2.406090540928068E-02 1.5948717E-03 1.121242109009753E-02 1.5812539E-03 -1.845548000493876E-02 1.5802941E-03 7.912953489862166E-04 1.5628750E-03 -4.302837063839781E-03 1.5991720E-03 2.079771440621235E-05 0
55.0 4.995902029814044E-01 1.1876543E-03 2.906542938103523E-01 1.3853312E-03 6.338698402136406E-02 1.5845386E-03 1.469719101610804E-01 1.5366094E-03 -2.830915220094076E-03 1.5680732E-03 -6.420790546988258E-04 1.5940920E-03 1.233584141396622E-02 1.5788623E-03 -1.355478062944766E-02 1.5828896E-03 -1.141018755317326E-02 1.5533821E-03 -7.710223191642077E-03 1.6081296E-03 2.047828020338118E-05 0
60.0 4.415649753904912E-01 1.2659647E-03 2.884823399334340E-01 1.4164544E-03 3.102270489207339E-02 1.5844300E-03 1.096466167553907E-01 1.5571391E-03 4.107535133823420E-03 1.5744518E-03 -1.401578846341889E-02 1.5874697E-03 6.087210967641720E-03 1.5694964E-03 -7.397357626631275E-03 1.5925600E-03 -1.779380135356151E-02 1.5608504E-03 -2.076727927767695E-02 1.6000099E-03 2.020392906852112E-05 0
65.0 3.859926997678325E-01 1.3345502E-03 2.826844995962349E-01 1.4403092E-03 1.038688189774781E-02 1.5781251E-03 7.545084355107248E-02 1.5749737E-03 1.055190287167328E-02 1.5798766E-03 -1.788215325916730E-02 1.5817267E-03 -3.597621905334611E-03 1.5562005E-03 -5.880120098377285E-03 1.6056237E-03 -1.643029116421317E-02 1.5716395E-03 -3.336288063489704E-02 1.5884140E-03 1.993672809657496E-05 0
70.0 3.335118445855593E-01 1.3940669E-03 2.737684723141243E-01 1.4579785E-03 -1.746234114881926E-04 1.5711556E-03 4.610545783989257E-02 1.5877236E-03 1.363050227403528E-02 1.5808353E-03 -1.587683218086774E-02 1.5807579E-03 -1.259292872532142E-02 1.5519088E-03 -1.106016580883529E-02 1.6094097E-03 -9.740845332860780E-03 1.5781832E-03 -3.860399640620505E-02 1.5815931E-03 1.968736667616888E-05 0
75.0 2.845890088672144E-01 1.4442689E-03 2.622243738658244E-01 1.4715115E-03 -3.657296323005920E-03 1.5670730E-03 2.222981118571182E-02 1.5942928E-03 1.255201775676720E-02 1.5770069E-03 -1.099032277908083E-02 1.5848288E-03 -1.769105659807612E-02 1.5599496E-03 -2.119594972366435E-02 1.6008657E-03 -3.316791276953404E-03 1.5812253E-03 -3.564819631071586E-02 1.5790321E-03 1.945611974399867E-05 0
80.0 2.395326112795399E-01 1.4855214E-03 2.484680988967788E-01 1.4824597E-03 -2.543158707542895E-03 1.5671422E-03 3.973955960801674E-03 1.5949856E-03 7.328912535048060E-03 1.5686584E-03 -6.301465648727153E-03 1.5933828E-03 -1.761813428921810E-02 1.5699016E-03 -3.155266699673362E-02 1.5902529E-03 8.461035716029134E-04 1.5821195E-03 -2.607090436462123E-02 1.5790887E-03 1.923637169320791E-05 0
85.0 1.982958519653960E-01 1.5187390E-03 2.326508290923389E-01 1.4920511E-03 1.265081142491911E-03 1.5709874E-03 -8.491219189330473E-03 1.5911175E-03 -5.611909956703896E-04 1.5592935E-03 -4.278488152591983E-03 1.6026651E-03 -1.280111149009435E-02 1.5770681E-03 -3.802891127894834E-02 1.5826657E-03 3.160716736166042E-04 1.5836254E-03 -1.403684161203870E-02 1.5783440E-03 1.903541294997870E-05 0
90.0 1.612525459591669E-01 1.5442451E-03 2.152976085786621E-01 1.5011839E-03 5.877115862159625E-03 1.5755992E-03 -1.596723945322631E-02 1.5862108E-03 -8.299018475498654E-03 1.5536870E-03 -5.527210084167680E-03 1.6079753E-03 -6.930744401338407E-03 1.5817438E-03 -3.929606344593451E-02 1.5780210E-03 -4.543466276893127E-03 1.5852970E-03 -2.762873799848069E-03 1.5769328E-03 1.884278612317125E-05 0
95.0 1.282112990020728E-01 1.5633002E-03 1.967155308632580E-01 1.5101127E-03 1.043437104467520E-02 1.5799302E-03 -1.917403962229908E-02 1.5816014E-03 -1.463162313686160E-02 1.5545738E-03 -1.074262076372700E-02 1.6067600E-03 -1.315469395420639E-03 1.5831097E-03 -3.545641178784738E-02 1.5771792E-03 -1.092554401651496E-02 1.5826908E-03 4.816844993938320E-03 1.5793676E-03 1.866203035415159E-05 0
100.0 9.959314909173192E-02 1.5763379E-03 1.773985343642243E-01 1.5192885E-03 1.376913835841935E-02 1.5827978E-03 -1.873343761342664E-02 1.5786302E-03 -1.884676883469437E-02 1.5597696E-03 -1.869841214751276E-02 1.6011307E-03 2.473732586373747E-03 1.5830942E-03 -2.702626411355061E-02 1.5780225E-03 -2.000138784164228E-02 1.5814200E-03 8.076104806501708E-03 1.5801296E-03 1.848810043887355E-05 0
105.0 7.492515728454675E-02 1.5847344E-03 1.577960199255670E-01 1.5284221E-03 1.577581123602416E-02 1.5823329E-03 -1.600850955128734E-02 1.5791522E-03 -1.943005403695166E-02 1.5684756E-03 -2.775313389757126E-02 1.5919078E-03 2.003725983858416E-03 1.5846194E-03 -1.685875121343024E-02 1.5772017E-03 -2.863940628242954E-02 1.5807826E-03 5.263521008775164E-03 1.5801620E-03 1.832668599560836E-05 0
110.0 5.387901307910824E-02 1.5888214E-03 1.383079244403231E-01 1.5380218E-03 1.554217273324296E-02 1.5800659E-03 -1.201372134297731E-02 1.5816090E-03 -1.617783247565431E-02 1.5763954E-03 -3.500416936210113E-02 1.5835301E-03 -8.785164039581190E-04 1.5870743E-03 -6.503834327715480E-03 1.5751206E-03 -3.427874947650209E-02 1.5775908E-03 -3.245359119824111E-03 1.5828154E-03 1.817181812275684E-05 0
115.0 3.664664804552439E-02 1.5890681E-03 1.192000745638934E-01 1.5482665E-03 1.273585500168861E-02 1.5761517E-03 -7.860718063676213E-03 1.5857651E-03 -1.035325801829374E-02 1.5811673E-03 -3.952065878469124E-02 1.5784770E-03 -5.978935991356900E-03 1.5844021E-03 2.220319114352040E-03 1.5778123E-03 -3.284382342785040E-02 1.5763638E-03 -1.278934098649472E-02 1.5839478E-03 1.802149836603412E-05 0
120.0 2.267475187895469E-02 1.5870685E-03 1.007818559717982E-01 1.5581665E-03 8.537805138971058E-03 1.5707438E-03 -4.330668164237631E-03 1.5913299E-03 -4.099858553905379E-03 1.5818447E-03 -4.036912792480702E-02 1.5778340E-03 -1.296473682568716E-02 1.5832761E-03 7.766120774671626E-03 1.5786449E-03 -2.564418278471131E-02 1.5788786E-03 -1.825211916513501E-02 1.5818386E-03 1.788089337917736E-05 0
125.0 1.190286127740707E-02 1.5832084E-03 8.304490697993464E-02 1.5678920E-03 2.897926087346033E-03 1.5652379E-03 -2.020276444306553E-03 1.5968697E-03 1.590219895493123E-03 1.5818388E-03 -3.784760155519840E-02 1.5781749E-03 -2.000022089405814E-02 1.5831335E-03 9.304973544805110E-03 1.5783790E-03 -1.534394166752527E-02 1.5834564E-03 -1.939828580840173E-02 1.5778568E-03 1.774492292646695E-05 0
130.0 3.807211878475745E-03 1.5781473E-03 6.637256567826624E-02 1.5771420E-03 -3.756414511098720E-03 1.5604430E-03 -1.184299394918682E-03 1.6015508E-03 5.342312616717334E-03 1.5821894E-03 -3.224181504804660E-02 1.5784047E-03 -2.598367874583192E-02 1.5828914E-03 6.997921055755023E-03 1.5782457E-03 -5.681677001787565E-03 1.5844150E-03 -1.544660924847807E-02 1.5774345E-03 1.761680336006850E-05 0
135.0 -1.909208115959259E-03 1.5726811E-03 5.070053279864655E-02 1.5855056E-03 -1.066726377099978E-02 1.5566132E-03 -2.542505501762969E-03 1.6051102E-03 6.540217270484781E-03 1.5842874E-03 -2.493962057398943E-02 1.5769384E-03 -3.055934125118156E-02 1.5807860E-03 1.491041153865881E-03 1.5800190E-03 -1.885899470757636E-04 1.5807945E-03 -1.005470676961577E-02 1.5813311E-03 1.748434506050901E-05 0
140.0 -5.662657734737501E-03 1.5680042E-03 3.668189862462734E-02 1.5920112E-03 -1.648588708717751E-02 1.5549157E-03 -6.001264195804602E-03 1.6064629E-03 4.927507072618795E-03 1.5852091E-03 -1.770167087437136E-02 1.5765307E-03 -3.235607121551773E-02 1.5784983E-03 -5.449399766414424E-03 1.5820825E-03 1.300516520241499E-03 1.5809818E-03 -6.107671404477703E-03 1.5812421E-03 1.735916714236917E-05 0
145.0 -7.578744489184322E-03 1.5646040E-03 2.404345553293039E-02 1.5965155E-03 -2.069579457592526E-02 1.5565722E-03 -1.133551641180289E-02 1.6044700E-03 2.316668700462364E-03 1.5845456E-03 -1.044493609317209E-02 1.5775513E-03 -2.998136846104535E-02 1.5766117E-03 -1.235649195949234E-02 1.5840021E-03 2.162202556195563E-03 1.5862384E-03 -4.174327774508281E-03 1.5759956E-03 1.724154351165089E-05 0
150.0 -7.812855152604117E-03 1.5624565E-03 1.315034451760286E-02 1.5992450E-03 -2.337463792883914E-02 1.5611062E-03 -1.770418990290372E-02 1.5995854E-03 -2.124808894344471E-03 1.5829743E-03 -4.024227437188634E-03 1.5792764E-03 -2.409107897390648E-02 1.5789434E-03 -1.718001037741835E-02 1.5819561E-03 2.608488962371413E-03 1.5892159E-03 -1.467238277730306E-03 1.5730140E-03 1.712660040558190E-05 0
Abbreviations
Some abbreviations are used in the column names:
cos<j>
estimator of the mean cos coefficients of the Fourier transform, harmonic<j>
cos<j>
estimator of the mean sin coefficients of the Fourier transform, harmonic<j>
err_cos<j>
estimator of the standard deviation of the cos coefficients mean (standard error), harmonic<j>
err_sin<j>
estimator of the standard deviation of the sin coefficients mean (standard error), harmonic<j>
eps2
estimator of the mean square strainnrpo
number of random points outside the region of interest for the current value ofL
User guide
It is necessary to install the NVIDIA CUDA Toolkit to compile the OpenCL code on NVIDIA GPUs.
The directory tests/
contains several examples of package module usage. To become familiar with the use of these modules you should go through these scripts in the following order:
test_code.py
test_run.py
In the sources the docstrings are carefully written and it is recommended to refer to the documentation with the help()
python command to list the available functions, classes and parameters.
The installation from PyPI does not allow the modification of the code. To edit the package and contribute to the development use the following commands in your working directory.
pip uninstall lpa-xrd
git clone https://github.com/DunstanBecht/lpa-xrd.git
pip install -e lpa-xrd
cd lpa-xrd
git branch <name_of_your_new_branch>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file lpa-xrd-1.0.1.tar.gz
.
File metadata
- Download URL: lpa-xrd-1.0.1.tar.gz
- Upload date:
- Size: 34.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c6594931edee6147c3fb6c4142c71d996d158d445828a886bc50528724004a6 |
|
MD5 | 0f8ac6fc2c91032e27804b30eafe363c |
|
BLAKE2b-256 | 859c0fef4d03d0197933149fee482bd6761f92301d9fdbc3122884160b5bbca8 |
File details
Details for the file lpa_xrd-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: lpa_xrd-1.0.1-py3-none-any.whl
- Upload date:
- Size: 31.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 68e822faebd9de84c90444c7e2ce88738acf1ead7b64142ef14c723e0511d925 |
|
MD5 | 4a6c5568092e8842c427c11c1cdafe3c |
|
BLAKE2b-256 | ef4cad8312aa6fc5073aade2012dd5808d83b20cf385ea64755fdf343b7e067b |