Implements local polynomial point estimation with robust bias-corrected uniform confidence intervals.
Project description
LPDENSITY
The lpdensity
package provides Stata and R implementations of bandwidth selection, point estimation and inference procedures for local polynomial distribution and density methods.
This work was supported by the National Science Foundation through grant SES-1459931, SES-1459967, SES-1947805 and SES-1947662.
Authors
Matias D. Cattaneo (cattaneo@princeton.edu)
Xinwei Ma (x1ma@ucsd.edu)
Michael Jansson (mjansson@econ.berkeley.edu)
Rajita Chandak (maintainer) (rchandak@princeton.edu)
Website
https://nppackages.github.io/lpdensity/
Manual
https://github.com/nppackages/lpdensity/tree/master/Python/lpdensity/docs/build/latex/lpdensity.pdf
Installation
To install/update use pip
pip install lpdensity
Usage
from lpdensity import lpdensity, lpbwdensity
Dependencies
- numpy
- pandas
- math
- scipy
- sympy
- plotnine
References
For overviews and introductions, see lpdensity website
Software and Implementation
- Cattaneo, Jansson and Ma (2022): lpdensity: Local Polynomial Density Estimation and Inference.
Journal of Statistical Software 101(2): 1-25.
Technical and Methodological
-
Cattaneo, M. D., M. Jansson, and X. Ma (2020). Simple Local Polynomial Density Estimators.
Journal of the American Statistical Association, 115(531): 1449-1455.
Supplemental appendix. -
Cattaneo, M. D., M. Jansson, and X. Ma (2023). Local Regression Distribution Estimators.
Journal of Econometrics, forthcoming.
Supplemental Appendix. -
Calonico, S., M. D. Cattaneo, and M. H. Farrell (2018): On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference.
Journal of the American Statistical Association 113(522): 767-779. -
Calonico, S., M. D. Cattaneo, and M. H. Farrell (2022): Coverage Error Optimal Confidence Intervals for Local Polynomial Regression.
Bernoulli 28(4): 2998-3022. -
Cattaneo, M. D., M. Jansson, and X. Ma (2022). lpdensity: Local Polynomial Density Estimation and Inference.
Journal of Statistical Software, 101(2), 1–25.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for lpdensity-2.4.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f6918e4d22e6ecd35690e3430155baf72b5adeed571e1a303b07a368db6310e9 |
|
MD5 | 57a298ded15e36b5b472a3901f6fe127 |
|
BLAKE2b-256 | 9304e7622fd7d54eee1769c0b7502e96a2e60455c9785532c4fb6322201ca98e |