Client for LSEG Data Platform API's
Project description
The LSEG Data Library for Python provides a set of ease-of-use interfaces offering your applications a uniform access to the breadth and depth of financial data and services available on the Data Platform.
With this library, the same Python code can be used to retrieve data whatever the access point you choose to connect your application to the Data Platform. It can be either via a direct connection, via Eikon, via LSEG Workspace, via CodeBook or even via a local Real-Time Distribution System.
The library provides several abstraction layers enabling different programming styles and technics suitable for all developers from Financial Coders to Seasoned Developers:
- Using the Access layer is the easiest way to get LSEG data. The Access layer provides simple interfaces allowing you to rapidly prototype solutions within interactive environments such as Jupyter Notebooks. It has been designed for quick experimentation with our data and for Financial Coders specific needs.
- The Content layer is the basement of the Access layer. It provides developers with interfaces suitable for more advanced use cases (synchronous function calls, async/await, event driven). The Content layer refers to logical market data objects like market data prices and quotes, fundamental & reference data, historical data, company research data and so on.
- The Delivery layer is a low abstraction layer that defines interfaces used to interact with service agnostic delivery mechanisms of the Data Platform. The Delivery layer is a foundational component of the Content layer.
- The Session layer defines interfaces allowing your application to connect to the Data Platform via different access points (either via a direct connection, via Eikon, via the LSEG Workspace, via CodeBook or even via a local Real-Time Distribution System).
Some examples...
... with the Access layer
Import the LSEG Data Library
import lseg.data as ld
Open a data session
ld.open_session()
Get pricing snapshots and fundamental data
df = ld.get_data(
universe=['IBM.N', 'VOD.L'],
fields=['BID', 'ASK', 'TR.Revenue']
)
print(df)
Instrument | BID | ASK | |
---|---|---|---|
0 | IBM.N | 0.00 | 0.0 |
1 | VOD.L | 120.02 | 120.1 |
Get Fundamental and pricing history
df = ld.get_history(
universe="GOOG.O",
fields=["BID", "ASK", "TR.Revenue"],
interval="1Y",
start="2015-01-01",
end="2019-10-01",
)
print(df)
GOOG.O | BID | ASK | Revenue |
---|---|---|---|
2015-12-31 | 759.06 | 758.99 | 74989000000 |
2016-12-31 | 772.94 | 772.12 | 90272000000 |
2017-12-31 | 1046.46 | 1046.4 | 110855000000 |
2018-12-31 | 1037.36 | 1036.98 | |
2019-12-31 | 1336.94 | 1335.9 |
Close the session
ld.close_session()
... with the Content layer dedicated to advanced use cases
Import the LSEG Data Library
import lseg.data as ld
Open a data session
ld.open_session()
Fundamental And Reference data retrieval
from lseg.data.content import fundamental_and_reference
response = fundamental_and_reference.Definition(
["TRI.N", "IBM.N"],
["TR.Revenue", "TR.GrossProfit"]
).get_data()
print(response.data.df)
instrument | date | TR.Revenue | TR.GrossProfit | |
---|---|---|---|---|
0 | TRI.N | 2020-12-31T00:00:00 | 5984000000 | 5656000000 |
1 | IBM.N | 2020-12-31T00:00:00 | 73620000000 | 35574000000 |
Historical data retrieval
from lseg.data.content import historical_pricing
response = historical_pricing.summaries.Definition(
universe='VOD.L',
interval=historical_pricing.Intervals.DAILY,
fields=['BID', 'ASK', 'OPEN_PRC', 'HIGH_1', 'LOW_1', 'TRDPRC_1', 'NUM_MOVES', 'TRNOVR_UNS']
).get_data()
print(response.data.df)
BID | ASK | OPEN_PRC | HIGH_1 | LOW_1 | TRDPRC_1 | NUM_MOVES | TRNOVR_UNS | |
---|---|---|---|---|---|---|---|---|
2019-12-12 | 144.32 | 144.34 | 144.42 | 145.66 | 143.46 | 144.18 | 12631.0 | 8498347218.71154 |
2019-12-11 | 143.58 | 143.6 | 142.72 | 144.8 | 142.62 | 143.58 | 10395.0 | 8815450412.65353 |
2019-12-10 | 142.74 | 142.78 | 143.84 | 143.84 | 141.48 | 142.74 | 10311.0 | 8070285210.45742 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
2019-11-18 | 152.1 | 152.12 | 154.74 | 155.66 | 152.0 | 152.12 | 14606.0 | 19322988639.34 |
2019-11-15 | 154.6 | 154.62 | 160.68 | 160.68 | 154.06 | 154.6326 | 17035.0 | 31993013818.37456 |
Real-time streaming data retrieval
from lseg.data.content import pricing
pricing_stream = ld.content.pricing.Definition(
universe=['EUR=', 'GBP=', 'JPY=', 'CAD='],
fields=['DSPLY_NAME', 'BID', 'ASK']
).get_stream()
pricing_stream.on_refresh(lambda pricing_stream, instrument_name, fields:
print(f"Refresh received for {instrument_name}: {fields}"))
pricing_stream.on_update(lambda pricing_stream, instrument_name, fields:
print(f"Update received for {instrument_name}: {fields}"))
pricing_stream.open()
Output:
Refresh received for EUR= : {'DSPLY_NAME': 'BARCLAYS LON', 'BID': 1.1635, 'ASK': 1.1639}
Refresh received for GBP= : {'DSPLY_NAME': 'NEDBANK LTD JHB', 'BID': 1.3803, 'ASK': 1.3807}
Refresh received for CAD= : {'DSPLY_NAME': 'DANSKE BANK COP', 'BID': 1.2351, 'ASK': 1.2352}
Refresh received for JPY= : {'DSPLY_NAME': 'ASANPACIFIBK MOW', 'BID': 113.81, 'ASK': 113.83}
Update received for JPY= : {'DSPLY_NAME': 'NEDBANK LTD JHB', 'BID': 113.81, 'ASK': 113.83}
Update received for CAD= : {'DSPLY_NAME': 'DANSKE BANK COP', 'BID': 1.2351, 'ASK': 1.2352}
Update received for JPY= : {'DSPLY_NAME': 'ASANPACIFIBK MOW', 'BID': 113.81, 'ASK': 113.83}
Update received for EUR= : {'DSPLY_NAME': 'BARCLAYS LON', 'BID': 1.1635, 'ASK': 1.1639}
Update received for CAD= : {'DSPLY_NAME': 'DANSKE BANK COP', 'BID': 1.2351, 'ASK': 1.2352}
Search
from lseg.data.content import search
response = search.Definition("IBM").get_data()
print(response.data.df)
RIC | BusinessEntity | PermID | DocumentTitle | PI | |
---|---|---|---|---|---|
0 | ORGANISATION | International Business Machines Corp, Public C... | 37036 | ||
1 | IBM | QUOTExEQUITY | 55839165994 | International Business Machines Corp, Ordinary... | 1097326 |
2 | ORGANISATION | Tiers Corporate Bond Backed Certificates Trust... | 18062670 | ||
3 | ORGANISATION | SG Stuttgart Vaihingen BM-Campus 1 UG haftungs... | 27968389 | ||
4 | 0#IBMF: | QUOTExEQUITY | 21481052421 | Eurex International Business Machines Equity F... | 48924732 |
5 | 0#IBMDF: | QUOTExEQUITY | 21612423771 | Euronext Amsterdam IBM Dividend Future Chain C... | 259118763 |
6 | IBMFc1 | QUOTExEQUITY | 21481052892 | Eurex International Business Machines Equity F... | 49450681 |
7 | IBMFc2 | QUOTExEQUITY | 21481053949 | Eurex International Business Machines Equity F... | 50092347 |
8 | IBMDFc1 | QUOTExEQUITY | 21613372305 | Euronext Amsterdam IBM Single Stock Dividend F... | 260213021 |
9 | IBMFc3 | QUOTExEQUITY | 21481053950 | Eurex International Business Machines Equity F... | 50092348 |
Close the session
ld.close_session()
Learn more
To learn more about the LSEG Data Library for Python simply log into the LSEG Developer Community. By registering and logging in to the LSEG Developer Community portal you will have free access to a number of learning materials such as Quick Start guides, Tutorials, Documentation and much more.
Help and Support
If you have any questions regarding the API usage, please post them on the Refinitiv Data Q&A Forum. The LSEG Developer Community will be very pleased to help you.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file lseg_data-2.0.1.tar.gz
.
File metadata
- Download URL: lseg_data-2.0.1.tar.gz
- Upload date:
- Size: 515.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 782a428ded0aa5113963c877ce68252ca44f6dcbd894e52739e57188f1dfb03b |
|
MD5 | bc905b2f5d0dfb0a0607d30bc38c87d0 |
|
BLAKE2b-256 | 105f363179ec45ab6a687eba336ec3dc9fa16e4b292dcf19fbd9919a8073eb93 |
File details
Details for the file lseg_data-2.0.1-py3-none-any.whl
.
File metadata
- Download URL: lseg_data-2.0.1-py3-none-any.whl
- Upload date:
- Size: 872.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 239ceceaacc2980d412a77d9c7a88a92f9f92b4bebaadec4598d0e6001bd3baf |
|
MD5 | b9d837655cafefc9cbe4bbda34d378ea |
|
BLAKE2b-256 | 32d67d90c581ecda0ed3729afa09a7aa1c93d7b94e7637088e7300979d0602a7 |