Skip to main content

Client for LSEG Data Platform API's

Project description

The LSEG Data Library for Python provides a set of ease-of-use interfaces offering your applications a uniform access to the breadth and depth of financial data and services available on the Data Platform.

With this library, the same Python code can be used to retrieve data whatever the access point you choose to connect your application to the Data Platform. It can be either via a direct connection, via Eikon, via LSEG Workspace, via CodeBook or even via a local Real-Time Distribution System.

The library provides several abstraction layers enabling different programming styles and technics suitable for all developers from Financial Coders to Seasoned Developers:

  • Using the Access layer is the easiest way to get LSEG data. The Access layer provides simple interfaces allowing you to rapidly prototype solutions within interactive environments such as Jupyter Notebooks. It has been designed for quick experimentation with our data and for Financial Coders specific needs.
  • The Content layer is the basement of the Access layer. It provides developers with interfaces suitable for more advanced use cases (synchronous function calls, async/await, event driven). The Content layer refers to logical market data objects like market data prices and quotes, fundamental & reference data, historical data, company research data and so on.
  • The Delivery layer is a low abstraction layer that defines interfaces used to interact with service agnostic delivery mechanisms of the Data Platform. The Delivery layer is a foundational component of the Content layer.
  • The Session layer defines interfaces allowing your application to connect to the Data Platform via different access points (either via a direct connection, via Eikon, via the LSEG Workspace, via CodeBook or even via a local Real-Time Distribution System).

Some examples...

... with the Access layer

Import the LSEG Data Library

import lseg.data as ld

Open a data session

ld.open_session()

Get pricing snapshots and fundamental data

    df = ld.get_data(
        universe=['IBM.N', 'VOD.L'], 
        fields=['BID', 'ASK', 'TR.Revenue']
    )
    print(df)
Instrument BID ASK
0 IBM.N 0.00 0.0
1 VOD.L 120.02 120.1

Get Fundamental and pricing history

    df = ld.get_history(
        universe="GOOG.O",
        fields=["BID", "ASK", "TR.Revenue"],
        interval="1Y",
        start="2015-01-01",
        end="2019-10-01",
    )
    print(df)
GOOG.O BID ASK Revenue
2015-12-31 759.06 758.99 74989000000
2016-12-31 772.94 772.12 90272000000
2017-12-31 1046.46 1046.4 110855000000
2018-12-31 1037.36 1036.98
2019-12-31 1336.94 1335.9

Close the session

ld.close_session()

... with the Content layer dedicated to advanced use cases

Import the LSEG Data Library

import lseg.data as ld

Open a data session

ld.open_session()

Fundamental And Reference data retrieval

from lseg.data.content import fundamental_and_reference

response = fundamental_and_reference.Definition(
    ["TRI.N", "IBM.N"],
    ["TR.Revenue", "TR.GrossProfit"]
).get_data()

print(response.data.df)
instrument date TR.Revenue TR.GrossProfit
0 TRI.N 2020-12-31T00:00:00 5984000000 5656000000
1 IBM.N 2020-12-31T00:00:00 73620000000 35574000000

Historical data retrieval

from lseg.data.content import historical_pricing

response = historical_pricing.summaries.Definition(
    universe='VOD.L',
    interval=historical_pricing.Intervals.DAILY,
    fields=['BID', 'ASK', 'OPEN_PRC', 'HIGH_1', 'LOW_1', 'TRDPRC_1', 'NUM_MOVES', 'TRNOVR_UNS']
).get_data()

print(response.data.df)
BID ASK OPEN_PRC HIGH_1 LOW_1 TRDPRC_1 NUM_MOVES TRNOVR_UNS
2019-12-12 144.32 144.34 144.42 145.66 143.46 144.18 12631.0 8498347218.71154
2019-12-11 143.58 143.6 142.72 144.8 142.62 143.58 10395.0 8815450412.65353
2019-12-10 142.74 142.78 143.84 143.84 141.48 142.74 10311.0 8070285210.45742
... ... ... ... ... ... ... ... ...
2019-11-18 152.1 152.12 154.74 155.66 152.0 152.12 14606.0 19322988639.34
2019-11-15 154.6 154.62 160.68 160.68 154.06 154.6326 17035.0 31993013818.37456

Real-time streaming data retrieval

from lseg.data.content import pricing

pricing_stream = ld.content.pricing.Definition(
    universe=['EUR=', 'GBP=', 'JPY=', 'CAD='],
    fields=['DSPLY_NAME', 'BID', 'ASK']
).get_stream()

pricing_stream.on_refresh(lambda pricing_stream, instrument_name, fields:
                          print(f"Refresh received for {instrument_name}: {fields}"))

pricing_stream.on_update(lambda pricing_stream, instrument_name, fields:
                         print(f"Update received for {instrument_name}: {fields}"))

pricing_stream.open()

Output:

Refresh received for EUR= : {'DSPLY_NAME': 'BARCLAYS     LON', 'BID': 1.1635, 'ASK': 1.1639}
Refresh received for GBP= : {'DSPLY_NAME': 'NEDBANK LTD  JHB', 'BID': 1.3803, 'ASK': 1.3807}
Refresh received for CAD= : {'DSPLY_NAME': 'DANSKE BANK  COP', 'BID': 1.2351, 'ASK': 1.2352}
Refresh received for JPY= : {'DSPLY_NAME': 'ASANPACIFIBK MOW', 'BID': 113.81, 'ASK': 113.83}
Update received for JPY= : {'DSPLY_NAME': 'NEDBANK LTD  JHB', 'BID': 113.81, 'ASK': 113.83}
Update received for CAD= : {'DSPLY_NAME': 'DANSKE BANK  COP', 'BID': 1.2351, 'ASK': 1.2352}
Update received for JPY= : {'DSPLY_NAME': 'ASANPACIFIBK MOW', 'BID': 113.81, 'ASK': 113.83}
Update received for EUR= : {'DSPLY_NAME': 'BARCLAYS     LON', 'BID': 1.1635, 'ASK': 1.1639}
Update received for CAD= : {'DSPLY_NAME': 'DANSKE BANK  COP', 'BID': 1.2351, 'ASK': 1.2352}

Search

from lseg.data.content import search

response = search.Definition("IBM").get_data()

print(response.data.df)
RIC BusinessEntity PermID DocumentTitle PI
0 ORGANISATION International Business Machines Corp, Public C... 37036
1 IBM QUOTExEQUITY 55839165994 International Business Machines Corp, Ordinary... 1097326
2 ORGANISATION Tiers Corporate Bond Backed Certificates Trust... 18062670
3 ORGANISATION SG Stuttgart Vaihingen BM-Campus 1 UG haftungs... 27968389
4 0#IBMF: QUOTExEQUITY 21481052421 Eurex International Business Machines Equity F... 48924732
5 0#IBMDF: QUOTExEQUITY 21612423771 Euronext Amsterdam IBM Dividend Future Chain C... 259118763
6 IBMFc1 QUOTExEQUITY 21481052892 Eurex International Business Machines Equity F... 49450681
7 IBMFc2 QUOTExEQUITY 21481053949 Eurex International Business Machines Equity F... 50092347
8 IBMDFc1 QUOTExEQUITY 21613372305 Euronext Amsterdam IBM Single Stock Dividend F... 260213021
9 IBMFc3 QUOTExEQUITY 21481053950 Eurex International Business Machines Equity F... 50092348

Close the session

ld.close_session()

Learn more

To learn more about the LSEG Data Library for Python simply log into the LSEG Developer Community. By registering and logging in to the LSEG Developer Community portal you will have free access to a number of learning materials such as Quick Start guides, Tutorials, Documentation and much more.

Help and Support

If you have any questions regarding the API usage, please post them on the Refinitiv Data Q&A Forum. The LSEG Developer Community will be very pleased to help you.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lseg_data-2.0.1.tar.gz (515.1 kB view details)

Uploaded Source

Built Distribution

lseg_data-2.0.1-py3-none-any.whl (872.1 kB view details)

Uploaded Python 3

File details

Details for the file lseg_data-2.0.1.tar.gz.

File metadata

  • Download URL: lseg_data-2.0.1.tar.gz
  • Upload date:
  • Size: 515.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for lseg_data-2.0.1.tar.gz
Algorithm Hash digest
SHA256 782a428ded0aa5113963c877ce68252ca44f6dcbd894e52739e57188f1dfb03b
MD5 bc905b2f5d0dfb0a0607d30bc38c87d0
BLAKE2b-256 105f363179ec45ab6a687eba336ec3dc9fa16e4b292dcf19fbd9919a8073eb93

See more details on using hashes here.

File details

Details for the file lseg_data-2.0.1-py3-none-any.whl.

File metadata

  • Download URL: lseg_data-2.0.1-py3-none-any.whl
  • Upload date:
  • Size: 872.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for lseg_data-2.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 239ceceaacc2980d412a77d9c7a88a92f9f92b4bebaadec4598d0e6001bd3baf
MD5 b9d837655cafefc9cbe4bbda34d378ea
BLAKE2b-256 32d67d90c581ecda0ed3729afa09a7aa1c93d7b94e7637088e7300979d0602a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page