Skip to main content

A fast Python 3 implementation of locality sensitive hashing with persistance support.

Project description

LSHash

Version:

0.0.6

Python:

3.7.7

A fast Python implementation of locality sensitive hashing with persistance support.

Based on original source code https://github.com/kayzhu/LSHash

Highlights

  • Python3 support

  • Load & save hash tables to local disk

  • Fast hash calculation for large amount of high dimensional data through the use of numpy arrays.

  • Built-in support for persistency through Redis.

  • Multiple hash indexes support.

  • Built-in support for common distance/objective functions for ranking outputs.

Installation

LSHash depends on the following libraries:

  • numpy

  • bitarray (if hamming distance is used as distance function)

Optional - redis (if persistency through Redis is needed)

To install from sources:

$ git clone https://github.com/loretoparisi/lshash.git
$ python setup.py install

To install from PyPI:

$ pip install lshashpy3
$ python -c "import lshashpy3 as lshash; print(lshash.__version__);"

Quickstart

To create 6-bit hashes for input data of 8 dimensions:

# create 6-bit hashes for input data of 8 dimensions:
lsh = LSHash(6, 8)

# index vector
lsh.index([2,3,4,5,6,7,8,9])

# index vector and extra data
lsh.index([10,12,99,1,5,31,2,3], extra_data="vec1")
lsh.index([10,11,94,1,4,31,2,3], extra_data="vec2")

# query a data point
top_n = 1
nn = lsh.query([1,2,3,4,5,6,7,7], num_results=top_n, distance_func="euclidean")
print(nn)

# unpack vector, extra data and vectorial distance
top_n = 3
nn = lsh.query([10,12,99,1,5,30,1,1], num_results=top_n, distance_func="euclidean")
   for ((vec,extra_data),distance) in nn:
       print(vec, extra_data, distance)

To save hash table to disk:

lsh = LSHash(hash_size=k, input_dim=d, num_hashtables=L,
    storage_config={ 'dict': None },
    matrices_filename='weights.npz',
    hashtable_filename='hash.npz',
    overwrite=True)

lsh.index([10,12,99,1,5,31,2,3], extra_data="vec1")
lsh.index([10,11,94,1,4,31,2,3], extra_data="vec2")
lsh.save()

To load hash table from disk and perform a query:

lsh = LSHash(hash_size=k, input_dim=d, num_hashtables=L,
    storage_config={ 'dict': None },
    matrices_filename='weights.npz',
    hashtable_filename='hash.npz',
    overwrite=True)

top_n = 3
nn = lsh.query([10,12,99,1,5,30,1,1], num_results=top_n, distance_func="euclidean")
print(nn)

API

  • To initialize a LSHash instance:

k = 6 # hash size
L = 5  # number of tables
d = 8 # Dimension of Feature vector
LSHash(hash_size=k, input_dim=d, num_hashtables=L,
   storage_config={ 'dict': None },
   matrices_filename='weights.npz',
   hashtable_filename='hash.npz',
   overwrite=True)

parameters:

hash_size:

The length of the resulting binary hash.

input_dim:

The dimension of the input vector.

num_hashtables = 1:

(optional) The number of hash tables used for multiple lookups.

storage = None:

(optional) Specify the name of the storage to be used for the index storage. Options include “redis”.

matrices_filename = None:

(optional) Specify the path to the .npz file random matrices are stored or to be stored if the file does not exist yet

hashtable_filename = None:

(optional) Specify the path to the .npz file hash table are stored or to be stored if the file does not exist yet

overwrite = False:

(optional) Whether to overwrite the matrices file if it already exist

  • To index a data point of a given LSHash instance, e.g., lsh:

lsh.index(input_point, extra_data=None):

parameters:

input_point:

The input data point is an array or tuple of numbers of input_dim.

extra_data = None:

(optional) Extra data to be added along with the input_point.

  • To query a data point against a given LSHash instance, e.g., lsh:

lsh.query(query_point, num_results=None, distance_func="euclidean"):

parameters:

query_point:

The query data point is an array or tuple of numbers of input_dim.

num_results = None:

(optional) The number of query results to return in ranked order. By default all results will be returned.

distance_func = "euclidean":

(optional) Distance function to use to rank the candidates. By default “euclidean” distance function will be used. Distance function can be “euclidean”, “true_euclidean”, “centred_euclidean”, “cosine”, “l1norm”.

  • To save the hash table currently indexed:

lsh.save():
Version:

0.0.6

Python:

3.7.7

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lshashpy3-0.0.6.tar.gz (8.2 kB view details)

Uploaded Source

File details

Details for the file lshashpy3-0.0.6.tar.gz.

File metadata

  • Download URL: lshashpy3-0.0.6.tar.gz
  • Upload date:
  • Size: 8.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.7

File hashes

Hashes for lshashpy3-0.0.6.tar.gz
Algorithm Hash digest
SHA256 183d131116994507a30b96a8434fe7db3b2fb82dec585c04f2278873e7f19047
MD5 3622960f03e5aef425163d5847770708
BLAKE2b-256 2dd1cf8144b627af127a305b416225dada09939dbce390f74a118b08d0cc3166

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page