A Python implementation of a multitaper window method for estimating Wigner spectra for certain locally stationary processes
Project description
LSPOpt
This module is a Python implementation of the multitaper window method described in [1] for estimating Wigner spectra for certain locally stationary processes.
Abstract from [1]:
This paper investigates the time-discrete multitapers that give a mean square error optimal Wigner spectrum estimate for a class of locally stationary processes (LSPs). The accuracy in the estimation of the time-variable Wigner spectrum of the LSP is evaluated and compared with other frequently used methods. The optimal multitapers are also approximated by Hermite functions, which is computationally more efficient, and the errors introduced by this approximation are studied. Additionally, the number of windows included in a multitaper spectrum estimate is often crucial and an investigation of the error caused by limiting this number is made. Finally, the same optimal set of weights can be stored and utilized for different window lengths. As a result, the optimal multitapers are shown to be well approximated by Hermite functions, and a limited number of windows can be used for a mean square error optimal spectrogram estimate.
Installation
Install via pip:
pip install lspopt
If you prefer to use conda
, see instructions in this repo.
Testing
Test with pytest
:
pytest tests/
See test badge at the top of this README for link to test coverage and reports.
Usage
To generate the taper windows only, use the lspopt
method:
from lspopt import lspopt
H, w = lspopt(N=256, c_parameter=20.0)
There is also a convenience method for using the SciPy spectrogram method
with the lspopt
multitaper windows:
from lspopt import spectrogram_lspopt
f, t, Sxx = spectrogram_lspopt(x, fs, c_parameter=20.0)
This can then be plotted with e.g. matplotlib.
Example
One can generate a chirp process realisation and run spectrogram methods on this.
import numpy as np
from scipy.signal import chirp, spectrogram
import matplotlib.pyplot as plt
from lspopt.lsp import spectrogram_lspopt
fs = 10000
N = 100000
amp = 2 * np.sqrt(2)
noise_power = 0.001 * fs / 2
time = np.arange(N) / fs
freq = np.linspace(1000, 2000, N)
x = amp * chirp(time, 1000, 2.0, 6000, method='quadratic') + \
np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
f, t, Sxx = spectrogram(x, fs)
ax = plt.subplot(211)
ax.pcolormesh(t, f, Sxx)
ax.set_ylabel('Frequency [Hz]')
ax.set_xlabel('Time [sec]')
f, t, Sxx = spectrogram_lspopt(x, fs, c_parameter=20.0)
ax = plt.subplot(212)
ax.pcolormesh(t, f, Sxx)
ax.set_ylabel('Frequency [Hz]')
ax.set_xlabel('Time [sec]')
plt.tight_layout()
plt.show()
Top: Using SciPy's spectrogram method. Bottom: Using LSPOpt's spectrogram solution.
References
Changelog
All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.
[1.3.0] - 2023-01-24
Changed
- Modified test matrix in CI
Removed
- Support for Python 2.7 and 3.6.
- Dependency on
six
.
1.2.0 - 2022-06-08
Added
- New plot file
Fixed
- Source distribution was broken on PyPI. Modified
MANIFEST.in
to correct that (#5 and #6) - Url to missing plot file
- Fixed some incorrect int declarations using
1e3
notation
Removed
- Removed Pipfile
1.1.1 - 2020-09-28
Added
- Added
CHANGELOG.md
Changed
- Change CI from Azure Devops to Github Actions
1.1.0 - 2019-06-19
Added
- First PyPI-released version
[1.0.0] - 2016-08-22
Added
- Regarded as a feature-complete, stable library.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file lspopt-1.3.0.tar.gz
.
File metadata
- Download URL: lspopt-1.3.0.tar.gz
- Upload date:
- Size: 39.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 288748dd48598f74d989551cc87877a4b17f7f923c89c09f39b7e0b30970c735 |
|
MD5 | 55c3586a73a7647148195dee52b1bb3f |
|
BLAKE2b-256 | 5d1a1d95d1f3e7445eaafa5b61f14ec06ab0252bafcfead3cd1fb6b5c8955fd6 |
File details
Details for the file lspopt-1.3.0-py2.py3-none-any.whl
.
File metadata
- Download URL: lspopt-1.3.0-py2.py3-none-any.whl
- Upload date:
- Size: 35.1 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ab2521afa71d1db4bd5c503443a8edaded6dfb99020c0928272875f97f3b834a |
|
MD5 | 62a8c4edd2a0fae83865f801fa26845c |
|
BLAKE2b-256 | ec62174bf4acf893a3a181ca295ac7e6a1fda3b376c010dd42a69780226fec32 |