Skip to main content

Lease squares fitting of Ellipses

Project description

DOI bdhammel

Least Squares fitting of ellipses, python routine

based on the publication Halir, R., Flusser, J.: 'Numerically Stable Direct Least Squares Fitting of Ellipses'

Install

pip install lsq-ellipse

https://pypi.org/project/lsq-ellipse/

Example execution

import numpy as np
from ellipse import LsqEllipse
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse

if __name__ == '__main__':
    # avalible in the `example.py` script in this repo
    X1, X2 = example.make_test_ellipse()

    X = np.array(list(zip(X1, X2)))
    reg = LsqEllipse().fit(X)
    center, width, height, phi = reg.as_parameters()

    print(f'center: {center[0]:.3f}, {center[1]:.3f}')
    print(f'width: {width:.3f}')
    print(f'height: {height:.3f}')
    print(f'phi: {phi:.3f}')

    fig = plt.figure(figsize=(6, 6))
    ax = plt.subplot()
    ax.axis('equal')
    ax.plot(X1, X2, 'ro', zorder=1)
    ellipse = Ellipse(
        xy=center, width=2*width, height=2*height, angle=np.rad2deg(phi),
        edgecolor='b', fc='None', lw=2, label='Fit', zorder=2
    )
    ax.add_patch(ellipse)

    plt.xlabel('$X_1$')
    plt.ylabel('$X_2$')

    plt.legend()
    plt.show()

ellipse fit

Cite this work

@software{ben_hammel_2020_3723294,
  author       = {Ben Hammel and Nick Sullivan-Molina},
  title        = {bdhammel/least-squares-ellipse-fitting: v2.0.0},
  month        = mar,
  year         = 2020,
  publisher    = {Zenodo},
  version      = {v2.0.0},
  doi          = {10.5281/zenodo.3723294},
  url          = {https://doi.org/10.5281/zenodo.3723294}
}

Ben Hammel, & Nick Sullivan-Molina. (2020, March 21). bdhammel/least-squares-ellipse-fitting: v2.0.0 (Version v2.0.0). Zenodo. http://doi.org/10.5281/zenodo.3723294

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lsq-ellipse-2.1.0.tar.gz (5.2 kB view details)

Uploaded Source

Built Distribution

lsq_ellipse-2.1.0-py3-none-any.whl (5.3 kB view details)

Uploaded Python 3

File details

Details for the file lsq-ellipse-2.1.0.tar.gz.

File metadata

  • Download URL: lsq-ellipse-2.1.0.tar.gz
  • Upload date:
  • Size: 5.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lsq-ellipse-2.1.0.tar.gz
Algorithm Hash digest
SHA256 9e4b44c4d27ac52b113db11f3154ef05bf03ef267b2f8d96f907f04714cfa4e4
MD5 9d38d8298ac357523b67049e8f93868d
BLAKE2b-256 0d5236a291bf0d8313614855e9e315018c3613e74aa2379caf26e49ea6ff918a

See more details on using hashes here.

File details

Details for the file lsq_ellipse-2.1.0-py3-none-any.whl.

File metadata

  • Download URL: lsq_ellipse-2.1.0-py3-none-any.whl
  • Upload date:
  • Size: 5.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lsq_ellipse-2.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 931fb36a845ceb5c00fc2b8f352bd6eaf421752fd91cfde33c5861d403d207cd
MD5 5eeb62e02a0c5bee425241e9dc4f3a29
BLAKE2b-256 a6ab41b89c75157d727606e2535b012ea78421a952369333654433de3df51210

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page