Skip to main content

Lease squares fitting of Ellipses

Project description

DOI bdhammel

Least Squares fitting of ellipses, python routine

based on the publication Halir, R., Flusser, J.: 'Numerically Stable Direct Least Squares Fitting of Ellipses'

Install

pip install lsq-ellipse

https://pypi.org/project/lsq-ellipse/

Example execution

import numpy as np
from ellipse import LsqEllipse
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse

if __name__ == '__main__':
    # avalible in the `example.py` script in this repo
    X1, X2 = example.make_test_ellipse()

    X = np.array(list(zip(X1, X2)))
    reg = LsqEllipse().fit(X)
    center, width, height, phi = reg.as_parameters()

    print(f'center: {center[0]:.3f}, {center[1]:.3f}')
    print(f'width: {width:.3f}')
    print(f'height: {height:.3f}')
    print(f'phi: {phi:.3f}')

    fig = plt.figure(figsize=(6, 6))
    ax = plt.subplot()
    ax.axis('equal')
    ax.plot(X1, X2, 'ro', zorder=1)
    ellipse = Ellipse(
        xy=center, width=2*width, height=2*height, angle=np.rad2deg(phi),
        edgecolor='b', fc='None', lw=2, label='Fit', zorder=2
    )
    ax.add_patch(ellipse)

    plt.xlabel('$X_1$')
    plt.ylabel('$X_2$')

    plt.legend()
    plt.show()

ellipse fit

Cite this work

@software{ben_hammel_2020_3723294,
  author       = {Ben Hammel and Nick Sullivan-Molina},
  title        = {bdhammel/least-squares-ellipse-fitting: v2.0.0},
  month        = mar,
  year         = 2020,
  publisher    = {Zenodo},
  version      = {v2.0.0},
  doi          = {10.5281/zenodo.3723294},
  url          = {https://doi.org/10.5281/zenodo.3723294}
}

Ben Hammel, & Nick Sullivan-Molina. (2020, March 21). bdhammel/least-squares-ellipse-fitting: v2.0.0 (Version v2.0.0). Zenodo. http://doi.org/10.5281/zenodo.3723294

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lsq-ellipse-2.2.1.tar.gz (5.6 kB view details)

Uploaded Source

Built Distribution

lsq_ellipse-2.2.1-py3-none-any.whl (5.6 kB view details)

Uploaded Python 3

File details

Details for the file lsq-ellipse-2.2.1.tar.gz.

File metadata

  • Download URL: lsq-ellipse-2.2.1.tar.gz
  • Upload date:
  • Size: 5.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lsq-ellipse-2.2.1.tar.gz
Algorithm Hash digest
SHA256 a40860d1af348f9e71491cb1f5cd2b9ef99f22e54fc98e7fa801caf459bda7ba
MD5 a154859a3b5e469a50f00bb9e0c1d437
BLAKE2b-256 0a4815f788d84729d68de91d5c7ecc5511b964beccb00c723f981e1841a9e1a2

See more details on using hashes here.

File details

Details for the file lsq_ellipse-2.2.1-py3-none-any.whl.

File metadata

  • Download URL: lsq_ellipse-2.2.1-py3-none-any.whl
  • Upload date:
  • Size: 5.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lsq_ellipse-2.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 2d8588b353914530ba6e6645610d06f73d20650b3ed6565acc66a652cf7db008
MD5 73e1caa68999f694463a0040ee3aa5c3
BLAKE2b-256 47c82a441f1ad6e96a5bf1e8285fa93bf5a482d533241de6965b102f6c9ad7c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page