Skip to main content

sqlalchemy models for ltree.

Project description

SQLAlchemy Ltree Model Mixins

Mixin classes, utilities, and database functions for working with ltree based trees in sqlalchemy and postgresql.

Synopsis

import ltree_models
import testing.postgresql
from sqlalchemy import (
  Column,
  create_engine,
  Integer,
  Text,
)
from sqlalchemy.ext.declarative import (
    declarative_base
)
from sqlalchemy.orm import (
    Session,
)

Base = declarative_base()
class UnorderedNode(Base, ltree_models.LtreeMixin):
    __tablename__ = 'ltree_nodes'
    id = Column(Integer, primary_key=True)

class OrderedNode(Base, ltree_models.OLtreeMixin):
    __tablename__ = 'oltree_nodes'
    id = Column(Integer, primary_key=True)

# Create a new postgresql database in /tmp
db = testing.postgresql.Postgresql()
engine = create_engine(db.url(), echo=False)
ltree_models.add_ltree_extension(engine)
Base.metadata.drop_all(engine)
Base.metadata.create_all(engine)

# Build and print an unordered ltree
unordered_builder = ltree_models.LtreeBuilder(engine, UnorderedNode)
unordered_builder.populate(2, 3, unordered_builder.path_chooser_sequential)
with Session(engine, future=True) as s:
    unordered_builder.print_tree(s, with_name_path=True)

# Output:
# UnorderedNode(id=1, node_name='r', path=Ltree('r')) r
# UnorderedNode(id=2, node_name='r.0', path=Ltree('r.0')) r/r.0
# UnorderedNode(id=3, node_name='r.0.0', path=Ltree('r.0.0')) r/r.0/r.0.0
# UnorderedNode(id=4, node_name='r.0.1', path=Ltree('r.0.1')) r/r.0/r.0.1
# UnorderedNode(id=5, node_name='r.0.2', path=Ltree('r.0.2')) r/r.0/r.0.2
# UnorderedNode(id=6, node_name='r.1', path=Ltree('r.1')) r/r.1
# UnorderedNode(id=7, node_name='r.1.0', path=Ltree('r.1.0')) r/r.1/r.1.0
# UnorderedNode(id=8, node_name='r.1.1', path=Ltree('r.1.1')) r/r.1/r.1.1
# UnorderedNode(id=9, node_name='r.1.2', path=Ltree('r.1.2')) r/r.1/r.1.2
# UnorderedNode(id=10, node_name='r.2', path=Ltree('r.2')) r/r.2
# UnorderedNode(id=11, node_name='r.2.0', path=Ltree('r.2.0')) r/r.2/r.2.0
# UnorderedNode(id=12, node_name='r.2.1', path=Ltree('r.2.1')) r/r.2/r.2.1
# UnorderedNode(id=13, node_name='r.2.2', path=Ltree('r.2.2')) r/r.2/r.2.2

# Build and print an ordered ltree
ordered_builder = ltree_models.OLtreeBuilder(engine, OrderedNode)
ordered_builder.populate(2, 3, ordered_builder.path_chooser_balanced)
with Session(engine, future=True) as s:
    ordered_builder.print_tree(s, with_name_path=True)

# Output:
# OrderedNode(id=1, node_name='r', path=Ltree('r')) r
# OrderedNode(id=2, node_name='r.0', path=Ltree('r.2500000000000000')) r/r.0
# OrderedNode(id=3, node_name='r.0.0', path=Ltree('r.2500000000000000.2500000000000000')) r/r.0/r.0.0
# OrderedNode(id=4, node_name='r.0.1', path=Ltree('r.2500000000000000.5000000000000000')) r/r.0/r.0.1
# OrderedNode(id=5, node_name='r.0.2', path=Ltree('r.2500000000000000.7500000000000000')) r/r.0/r.0.2
# OrderedNode(id=6, node_name='r.1', path=Ltree('r.5000000000000000')) r/r.1
# OrderedNode(id=7, node_name='r.1.0', path=Ltree('r.5000000000000000.2500000000000000')) r/r.1/r.1.0
# OrderedNode(id=8, node_name='r.1.1', path=Ltree('r.5000000000000000.5000000000000000')) r/r.1/r.1.1
# OrderedNode(id=9, node_name='r.1.2', path=Ltree('r.5000000000000000.7500000000000000')) r/r.1/r.1.2
# OrderedNode(id=10, node_name='r.2', path=Ltree('r.7500000000000000')) r/r.2
# OrderedNode(id=11, node_name='r.2.0', path=Ltree('r.7500000000000000.2500000000000000')) r/r.2/r.2.0
# OrderedNode(id=12, node_name='r.2.1', path=Ltree('r.7500000000000000.5000000000000000')) r/r.2/r.2.1
# OrderedNode(id=13, node_name='r.2.2', path=Ltree('r.7500000000000000.7500000000000000')) r/r.2/r.2.2

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ltree_models-0.1.0.tar.gz (8.8 kB view details)

Uploaded Source

Built Distribution

ltree_models-0.1.0-py3-none-any.whl (8.6 kB view details)

Uploaded Python 3

File details

Details for the file ltree_models-0.1.0.tar.gz.

File metadata

  • Download URL: ltree_models-0.1.0.tar.gz
  • Upload date:
  • Size: 8.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for ltree_models-0.1.0.tar.gz
Algorithm Hash digest
SHA256 95d81bf2f243ff55ebc3fc50caac1138e8c7023c33db13a6a901698b0eb896d5
MD5 83eab5cc3b062c739be5193affe68ba4
BLAKE2b-256 76366f686774e2ed4dcf5c78dac18e6a3d5c837ff91cf62e6d6193a7dceeeaf9

See more details on using hashes here.

File details

Details for the file ltree_models-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: ltree_models-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 8.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for ltree_models-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 32ad97dccd8fd622139f5603e6b8ba6315c331489893ba0f8f116eccf032112e
MD5 b746bffbaffa434ec475245c2addb783
BLAKE2b-256 5e1cba99d336bf2329662f1fc9ce9241b38cafeefd058a54453a9db14cd67948

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page